RESEARCHARTICLE Network analysis of wildfire transmission and implications for risk governance AlanA.Ager1*,CodyR.Evers2,MichelleA.Day3,HaiganoushK.Preisler4,AnaM. G.Barros5,MaxNielsen-Pincus2 1 MissoulaFireSciencesLaboratory,RockyMountainResearchStation,ForestService,UnitedStates DepartmentofAgriculture,Missoula,Montana,UnitedStatesofAmerica,2 DepartmentofEnvironmental SciencesandManagement,PortlandStateUniversity,Portland,Oregon,UnitedStatesofAmerica, 3 DepartmentofForestEcosystems&Society,CollegeofForestry,OregonStateUniversity,Corvallis, Oregon,UnitedStatesofAmerica,4 PacificSouthwestResearchStation,ForestService,UnitedStates a1111111111 DepartmentofAgriculture,Albany,California,UnitedStatesofAmerica,5 DepartmentofForestEngineering, a1111111111 Resources&Management,CollegeofForestry,OregonStateUniversity,Corvallis,Oregon,UnitedStatesof a1111111111 America a1111111111 *[email protected] a1111111111 Abstract OPENACCESS Wecharacterizedwildfiretransmissionandexposurewithinamatrixoflargelandtenures (federal,state,andprivate)surrounding56communitieswithina3.3millionhafireprone Citation:AgerAA,EversCR,DayMA,PreislerHK, BarrosAMG,Nielsen-PincusM(2017)Network regionofcentralOregonUS.Wildfiresimulationandnetworkanalysiswereusedtoquantify analysisofwildfiretransmissionandimplications theexchangeoffireamonglandtenuresandcommunitiesandanalyzetherelativecontribu- forriskgovernance.PLoSONE12(3):e0172867. tionsofhumanversusnaturalignitionstowildfireexposure.Amongthelandtenuresexam- doi:10.1371/journal.pone.0172867 ined,theareaburnedbyincomingfiresaveraged57%ofthetotalburnedarea.Community Editor:AsimZia,UniversityofVermont,UNITED exposurefromincomingfiresignitedonsurroundinglandtenuresaccountedfor67%ofthe STATES totalareaburned.Thenumberoflandtenurescontributingwildfiretoindividualcommunities Received:September9,2016 andsurroundingwildlandurbaninterface(WUI)variedfrom3to20.Communityfiresheds, Accepted:February11,2017 i.e.theareawhereignitionscanspawnfiresthatcanburnintotheWUI,covered40%ofthe Published:March3,2017 landscape,andwere5.5timeslargerthanthecombinedareaofthecommunitycoreand WUI.Forthemajorlandtenureswithinthestudyarea,theamountofincomingversusoutgo- Copyright:Thisisanopenaccessarticle,freeofall copyright,andmaybefreelyreproduced, ingfirewasrelativelyconstant,withsomeexceptions.Thestudyprovidesamulti-scale distributed,transmitted,modified,builtupon,or characterizationofwildfirenetworkswithinalarge,mixedtenureandfirepronelandscape, otherwiseusedbyanyoneforanylawfulpurpose. andillustratestheconnectivityofriskbetweencommunitiesandthesurroundingwildlands. TheworkismadeavailableundertheCreative Weusethefindingstodiscusshowscalemismatchesinlocalwildfiregovernanceresult CommonsCC0publicdomaindedication. fromdisconnectedplanningsystemsanddisparatefiremanagementobjectivesamongthe DataAvailabilityStatement:Allwildfiresimulation largelandowners(federal,state,private)andlocalcommunities.Localandregionalrisk andtransmissiondataaresharedat ScholarsArchive@OSU,OregonStateUniversity’s planningprocessescanadoptourconceptsandmethodstobetterdefineandmapthescale repositoryforscholarlymaterials.Datamaybe ofwildfireriskfromlargefireeventsandincorporatewildfirenetworkandconnectivitycon- accessedat:https://doi.org/10.7267/N9G15XS6. ceptsintoriskassessments. Allotherdataarepubliclyavailablewithsources listedinthemanuscriptorsupplementalmaterial. Funding:Thisworkwassupportedbyfunding fromtheNationalScienceFoundation(http://www. nsf.gov),CoupledHumanandNaturalSystems Program(CHH-1013296),theUnitedStates DepartmentofAgriculture,ForestService,Pacific PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 1/28 Networkanalysisofwildfiretransmission NorthwestResearchStation(http://www.fs.fed.us/ Introduction pnw/)andtheJointFireScienceProgram(http:// AsfireeventsinthewesternUSandelsewherehavebecomeincreasinglylargeanddestructive, www.firescience.gov/)grant(14-1-01-22toAA). Thefundershadnoroleinstudydesign,data developinglong-termsocialandecologicalstrategiestomitigateimpactsremainsachallenge collectionandanalysis,decisiontopublish,or [1].Awiderangeofsolutionshavebeenadvocatedinrecentliterature,includingchanging preparationofthemanuscript. existingsuppressionpoliciestoallowmorenaturalignitionssothatwildfireseventually Competinginterests:Theauthorshavedeclared becomeself-limiting[2],improvingtheefficiencyofprogramstotreatandreducewildland thatnocompetinginterestsexist. fuels[3],changingmanagementcultureandattitudestowardsfire[4],andincorporatingnew analyticaltoolsforwildfirescenarioplanningtoimprovethecouplingofhumanandbiophysi- calsubsystems[1,5].Thewiderangingdiscussionsreinforcethefactthatmanaginglong-term riskfromlarge,highlyuncertainwildfireeventsisacomplexsocioecologicalproblemthatwill requirerapidadjustmentsinexistingriskgovernancesystemsinachangingclimate.Byrisk governance,wemeantheprocessbywhichauthorityisexercisedanddecisionsaretaken withinsocialandinstitutionalenvironmentstoidentify,assess,manage,andcommunicate risk[6,7].Existingriskgovernanceischallengedbythefine-graineddiversityoflandtenures andsocioecologicalsettings(e.g.fireregime,attitudetowardsfire)relativetothescaleoflarge fireevents[8,9]. Perspectivesonwildfiremanagementareoftendeeplydivisiveamongpublicandprivate entities,andaconsistentperceptionofriskimpedesthedevelopmentofsocialorganizations thatareneededtoaligngoalswithrespecttowildfiresandtheirimpacts[9,10].Forinstance, inthewesternUS,statewildfiremanagementagencieshaveapublicmandatetoprotectpri- vatelandsfromwildfire,whilefederalpolicyonadjacentfire-adaptedforestsencourages increaseduseofprescribedandmanagedwildfiretoreducefuelsandwildfirerisk[11].The increaseduseofwildandprescribedfireasafuelmanagementstrategyonpublicforests[12] inparticularhasandwillcontinuetogeneratefiremanagementconflictsamongstate,federal, andprivatelandjurisdictions.Anotherexampleisthemanagementofprivateindustrialtim- berlands,wherethelackoffinancialincentivestoremovesurfacefuelsgeneratedfromharvest- ingcanexacerbatewildfirerisktosurroundingparcels[13–15].Atthecommunityscale, residentslivingnearfire-adaptedpublicforestsmayrecognizethebenefitsfrompoliciesfor increaseduseofprescribedandnaturalfiretorestorefireresiliency,butobjecttosmokeand otherbyproductsthathavedeleteriouseffectsonairquality[14].Severalprescribedfireshave escapedcontrolmeasuresand,insomecases,resultedincatastrophiclossesandsubsequent tighteningoffiremanagementregulations[16–18].Riskgovernanceconflictsamonglarge landowners,publiclandagencies,andcommunitieswillbecomemoreacuteintheAmerican Westwhereurbanizationandamenityproductionincreasinglycompetewithtraditionalland uses.Atthesametime,individualwildfireeventsincreasinglyintersectparcelswithlandown- ershavingdiverseattitudes,firemanagementpoliciesandriskgovernancesystems,and changingcurrentfiremanagementpoliciesisslowedbysubstantial“institutionalmomentum” [14,15]. Theinterdependenceofriskbetweendifferentlandownersandparcelswithinpublicland isrecognizedinnewerUS“alllands”wildfirepolicy(e.g.USCohesiveWildfireManagement Strategy[11]),andmanagementinitiativesincreasinglyemphasizecollaborative,cross- boundarysolutionstofiremanagement[19,20].Herewedefinerelevantboundariesasthose delineatingnotonlylandownership,butalsothepotentialtomanageforestsandfuelsby mechanicalmeans(henceforthlandtenures).However,mappingthescaleofrisk,quantify- ingrisktransmissionandmeasuringwildfireconnectivityandinterdependenceacrossland tenuresarelargelyunexploreddomains.Thestudyofrisktransmissioniswidelydiscussedin thepropagationofinfectiousdiseaseinhumans,plants,andanimalpopulations[21]where, forinstance,oneorganismtransmitsinfectiousdiseasetoanother.Inthecaseofwildfire,the PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 2/28 Networkanalysisofwildfiretransmission originsandextentofthedisturbancearewelldefinedspatially(i.e.mappedwithinafew meters),comparedtoothernaturaldisturbances(e.g.earthquakesandhurricanes),andits propagationisaffectedbyfuelloadingonindividualparcels[22].Afewstudieshaveexam- inedwildfirerisktransmissionfrompubliclandstothewildlandurbaninterface[23–26],but havenotexaminedcommunityspecificwildfiretransmissiononlarge,mixed-tenureland- scapes.Forinstance,howiswildfirerisksharedandaretherehotpotsofrisktransmission associatedwithspecificlandtenuresandlocations? Tounderstandtheimportanceofrisktransmissionandhelpcreateassessmentmethods thatcanadvanceconceptsforcross-boundaryriskgovernance,westudiedtheexchangeof wildfireexposureamonglargelandtenures(federalmanaged,federalwilderness,private industrialforest,andstatelands),and56adjacentcommunitiesona3.3millionhafireprone areaofthewesternUS.Weusethetermexposureratherthanrisksincewelimitouranalyses toareaburnedratherthanpredictingexpectedloss[27].Sincemostareaburnedbylargewild- fireeventsisunderextremeburningconditions,wecanassumethatmeasuresofburnedarea translatetohighseveritywildfireandlossofvaluesonburnedparcels.Weusedsimulation modelingandnetworkanalysistoexaminefivespecificquestions:(1)towhatextentdolarge tractsoffederal,state,andprivatelandstransmitwildfireexposuretoeachother;(2)dosome landtenurestransmitmorewildfireexposurethantheyreceive;(3)howmanyuniqueland tenurescontributetothewildfireexposureoftypicalwesternUScommunities;(4)whatisthe relativeinfluenceofhumanversusnaturalignitionsinthetransmissionofwildfireexposure; and(5)aretheresubstantialdifferencesinfireexposureamongthedifferentlandtenuresas describedbyfireintensityandlikelihood? Ourstudysetsthestageforimprovingcross-boundarycommunity,collaborative,and nationalforestplanning[19,20,28,29],withanalysesthatcanhelpidentifyconflictsand opportunitiestoachievefederalwildlandfirepolicy,includingfireadaptedcommunities,fire resilientlandscapes,andwildfireresponse.Specificallywefillagapinlocal,regional,and state-scaleriskassessmentmethods[27,30,31]usedforcollaborativeplanningbyprovidinga frameworktoquantifycross-boundaryexposureanddefinethegeographicscaleofriskto communities.Thisinformationcanbeusedtominimizescalemismatchesbetweenlandten- uresandriskplanningatthecommunityandlandscapescales. Methods Studyarea Thestudyareawaspartofthe“Forests,People,Fire”project[5]andspans3.3millionhain centralOregon,alongtheeastslopeoftheCascaderange(Fig1A).Thephysiographicgradi- ents,forestvegetation,climate,andpublicmanagementpracticesregardingwildfiremanage- mentresemblethenationalforeststhroughoutthewesternUS,andaredescribedindetail elsewhere[5].ThestudyareaincludesthetownsofRedmond,BendandKlamathFallsand manyothersmallruralcommunities.Elevationrangesbetween500and3240mandthetopo- graphic-moisturegradientfromwesttoeasthasastronginfluenceonthedistributionof majorecologicalzones.Higherelevationregionstothewestaredominatedbymountainhem- lock(Tsuga mertensiana)andfirandsprucesubalpineforest,whilemidelevationcoolerslopes arecharacterizedbymoistmixedconiferpatchesofDouglas-fir(Pseudotsugamenziesii),grand fir(Abiesgrandis),whitefir(Abiesconcolor)sometimesintermingledwithlodgepolepine (Pinuscontorta),andponderosapine(Pinusponderosa)atlowerelevations.Highelevationpla- teausontheeastsidearedominatedbyponderosapinemixedwithsemi-aridjuniper(Juni- perusoccidentalis)woodlandsandaridshrublands.About30%ofthestudyareaisdrymixed conifer,whilearidareasandjuniperwoodlandsrepresent19%.Standsofmoistmixedconifer PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 3/28 Networkanalysisofwildfiretransmission Fig1.Studyareamapsoflandtenuresandcommunities.(A)Landtenures(definedbyownershipandmanagementpractice),towns,andmajor highways.SeeTable1forlandtenuredescriptions.(B)CommunitiesasdefinedbyUSCensusdataoncorecommunityareaandsurroundingSILVIS wildlandurbaninterface(WUI)polygons.Communityboundaries(lightgraypolygons)representthecombinationofthecorecommunityareaand associatedWUI. doi:10.1371/journal.pone.0172867.g001 forests,ponderosapineandlodgepolepineaccountfor9%,14%and5%ofthestudyarea, respectively.Alpineandhighelevationnon-forestedareasandnon-vegetatedareasrepresent 10%and13%oflanduse,respectively.Theareaisnotedforextensivecontiguousstandsof lowdensityponderosapineoldgrowththatweremaintainedhistoricallywithperiodicnatural fire[32].Manyoftheseforestshavedevelopeddenseunderstoryconditionsandladderfuels largelyduetopoliciesthatprioritizesuppressionofnaturalfires[28]andlimitharvestingto preserveoldforesthabitatforwildlifeandrecreationalamenities.Recentlargefiresincludethe B&BComplexin2003(36,733ha),PoleCreekin2012(10,844ha)andSunnySidein2013 (21,448ha).Thestudyareahasalsoexperiencedrapidpopulationgrowthandexpansionof urbaninterface/intermixaroundseveralcoreareasincludingBend,Redmond,Sisters,and KlamathFalls,contributingtoagrowingconflictbetweenlandmanagementobjectivesofpub- licforestsandamenityinterestsofnewerresidents. Landtenureandcommunitydata Themajorlandownershipsinthestudyareaarethefederalgovernment(66%,28%protected), ConfederatedTribesofWarmSprings(native,8%),andprivateindustrial(7%)(Fig1A, Table1).Privateindustriallandsaregenerallymanagedforwoodproductsandareharvested PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 4/28 Networkanalysisofwildfiretransmission Table1. Majorlandtenuresandtransmittedwildfireestimatedwithwildfiresimulation. Landtenure Description Area(100 Total Totalfire Annualareaburned(hayr-1) ha) (%) (hayr-1) Human Natural NonTF TF-IN TF-OUT NonTF TF-IN TF-OUT BLM BureauofLandManagement 2050 6 1377 233 406 410 283 456 465 Community Corecommunities+wildlandurbaninterface 4338 13 2580 496 905 826 352 828 698 NF-M Nationalforest,managed(e.g.generalforest, 9350 29 4559 1139 679 764 1791 950 1094 timberproduction) NF-P Nationalforest,protected(e.g.biodiversity 9280 28 3996 1056 709 777 1429 801 1085 reserves,wilderness) NPS NationalParkService 390 1 72 4 9 2 37 23 24 Native NativeAmerican(ConfederatedTribesof 2460 8 6706 3738 525 487 2000 443 351 WarmSprings) ODF OregonDepartmentofForestry 180 1 66 5 36 21 4 21 16 OtherFED Otherfederalland(e.g.DepartmentofEnergy) 290 1 423 59 138 124 53 172 93 Private Non-industrialprivate 1450 4 829 70 337 304 50 371 223 Private Corporateforestsmanagedforwoodproducts, 2140 7 882 299 269 314 106 208 175 Industrial harvestedonregularrotation USFWS USFishandWildlifeService 300 1 129 25 37 34 19 47 57 Totalfire=nonTF+TF-IN.NonTF=theannualareaofnon-transmittedfire(self-burning).TF-IN=theannualareaburnedfromincomingfiresignitedon otherlandtenures.TF-OUT=theannualareaburnedonotherlandtenuresbyfiresignitedlocally.Additionaldescriptionsofthecalculationsfortransmitted fireareinthemethodssection. doi:10.1371/journal.pone.0172867.t001 onaregularrotationtomaximizerevenue.TheBureauofLandManagement(BLM)andnon- industrialprivateownersownroughly6%and4%ofthearearespectively.Thelatterarerela- tivelysmalltracksoflandrangingfrom5to100ha.Oregonstateforestedlandsaccountfor 1%ofthestudyarea.FederallandincludestheDeschutesandFremont-WinemaNationalFor- ests,CraterLakeNationalPark(NPS),BLMandareasmanagedbytheUSFishandWildlife Service(USFWS).Asmallportion(1%)ofthelandscapeincludesminorfederalownerssuch astheDepartmentofEnergyandDepartmentofDefense.Theownershipdatawerecombined withfederallandmanagementdatatocreatealandtenuredatasetusingdatasourcesfromthe “Forest,People,Fire”study[5].Nationalforestlandswerepartitionedbasedonlandand resourcemanagementplans(e.g.[33])intoprotectedareas(variousconservationandbiodi- versityreserves)versusthoseavailableformechanicalfueltreatments.Allotherfederalland withtheexceptionofnationalparklandwasconsideredavailableformechanicalfueltreat- ment.Theseparationofmanagedversusnon-managedwasthenincorporatedintotheland tenureclassification. Inadditiontothelandtenureslistedabove,wecreatedacommunityclassbasedoncore communitiesandsurroundingsparselypopulatedwildlandurbaninterface(WUI)areas.We definedcorecommunitieswithinthestudyareaaccordingtotheUSCensusdataoncommu- nityboundaries[34].Fifty-sixcommunitieswereidentifiedinthesedatarepresenting233,000 peopleand118,000structures.WethenattachedsurroundingSILVISwildlandurbaninterface (WUI)[35]polygonsoutsidethecorecommunityboundarybasedondistancetotheclosest communitycore.WeremovedSILVISpolygonsthatwere:(1)classifiedasuninhabited,(2) classifiedaswater,or(3)<0.1hainsize.Thecriteriaforremovingpolygonsconservedeven thelowestdensityWUIareasadjacenttonationalforests.AllotherWUIpolygonswere assignedtoacommunityandeachWUIpolygonwasattributedwithhousingunitdensity PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 5/28 Networkanalysisofwildfiretransmission (hereafterreferredtoasstructures)andarea(ha).Theresultingcommunitylayerconsistedof boththecoreareadefinedintheUSCensusandtheadjacentWUI(Fig1B). Wildfiresimulation Analyzingcross-boundaryexposurefromwildfiresrequiresspatialinformationonignition locationsandfireperimeters.Broadgeographicpatternsofcross-boundaryexposurehave beenpreviouslydescribedwithhistoricalfiredatabasesforlargeareas(e.g.westernUS,Fig8 inAgeretal.[36]).However,dataonhistoricallargefires,includingperimeters,areonlyavail- ableatbestforthepast20–30yearsformuchofUS,andthusareinsufficienttomapandpre- dictfuturepatternsofpotentialwildfiretransmissionatthescaleconsideredinthisstudy.A solutioniswildfiresimulation,whichisnowawidelyusedpracticeforbothtacticalandstrate- gicwildfiremanagementintheUSandelsewhere[37–40].MonteCarlosimulationsofmany fires(>100,000)usinghistoricalweatherandcalibratedmodelscanbeusedtogeneratesuffi- cientfiresamplestomapfinescaletransmissionamongparcelson>2millionhawithdesktop computers.MostpractitionersintheUSusetheminimumtraveltime(MTT)algorithm[41] thatcanreplicatelargefireperimetersandfireintensitypatterns[37,42–46].Weusedaver- sionofMTTencapsulatedinFConstMTT,acommandlineversionofFlamMap[41].Fire simulationsusedaspatiotemporalfirepredictionsystemusingthemethodsofPreisleretal. [47]anddescribedindetailelsewhere(S1Appendix).Thespatiotemporalignitionprediction modelwasbuiltusing18yearsofignitiondata[48]tocalculate:(1)theprobabilityofafireina givenpixelasafunctionofdailyenergyreleasecomponent(ERC),location(X,Ycoordinate) andday-of-year;and(2)theexpectedfiresizeforlocationswheretheabove-mentionedproba- bilityequalsoneasafunctionofdailyERCandlocation.Weseparatedhumancausedigni- tionsfromnaturalcausedignitions(S1Appendix). Weexecutedthespatiotemporalignitionmodeltogenerate3000fireseasonsforatotalof 63,736simulatedfires,sufficienttosaturatethelandscapewithwildfireandburneverypixel atleast10times.Thefirelistsgeneratedbythespatiotemporalignitionmodelusedby FConstMTTspecifyignitionlocation,day-of-year,year,cause,ERC,windspeed,winddirec- tion,fuelmoisture,burnperiodandexpectedfiresizeofeachfiresimulated. Burningconditionsassociatedwitheachignitionweresampledfromhistoricaldaysbased ondailyERC.Fuelmoistureforeachfuelsizeclassandfuelmodelwereaveragedoverhistori- calconditions(1987–2011)foreachvalueofERC,whilewindspeedanddirectionwerebased ondailyERCbutrestrictedtogustobservationsindaysofthehistoricalrecord(1994–2011) wherefiresexceeded500hainsize.AllweatherdatawereobtainedfromtheLavaButte RemoteAutomatedWeatherStation(RAWS,[49]).Weestimatedtheburnperiod(required byMTT)toachieveaspecificfiresizeusingarelationshipbetweenburntimeandfiresize builtfromcontrolledsimulations(S1Appendix).Simulatedwildfireperimetersboreaclose resemblancetohistoricalfireswithinthestudyarea[26].Examplelargefireperimetersfrom thesimulationsshowthepotentialimpactsintermsofareaandstructuresaffected(Fig2). WeobtainedsurfaceandcanopyfuelforwildfiresimulationsfromthenationalLANDFIRE dataset[50],aswellaselevation,slope,aspect,fuelmodel[51],canopycover,canopybase height,canopyheight,andcanopybulkdensity[52].LANDFIREisastandardizedfueldataset availablefortheconterminousUSandwidelyusedforwildfiremodelingandresearchinthe US[50,53]. FConstMTTsimulationswereperformedat90mundertheconditionsspecifiedinthefire- lists,andgenerated:(1)fireperimeters,(2)annualburnprobabilities,and(3)conditional burnprobabilitiesfor200.5mflamelengthcategories.Theburnprobability(BP)foragiven intensityclassistheratioofthenumberoftimesapixelburnedtothetotalnumberoffires PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 6/28 Networkanalysisofwildfiretransmission Fig2.Simulatedfireperimetersandignitionlocationsandassociatedlandtenuremap.Perimetersandignitionlocationsof(A)sixofthelargest firesbasedonareaburned,and(B)twoofthemostdestructivefiresbasedonexposuretothemostnumberofstructures.Perimeterswereextractedfrom over63,736simulatedfiressampledfromdistributionsmodeledfromhistoricalignitionlocationandfiresize.SeeTable1forlandtenuredescriptions. doi:10.1371/journal.pone.0172867.g002 simulatedandestimatestheannualburnprobabilityateachpixel.Theconditionalburnprob- abilitiesareoutputasagriddedpointfileandestimatetheprobabilityofafireatagiveninten- sity.Aprobabilityweightedaverageconditionalflamelength(CFL)wascalculatedfromthe conditionalburnprobabilitiestomeasuretheexpectedflamelengthgivenapixelburns. Wildfiretransmissionbetweenmajorlandtenures Wecalculatedtransmittedwildfireexposureusingmethodsdevelopedinourpreviousstudies [54,55].Specifically,fireperimeteroutputsandignitionlocationswereintersectedwiththe landtenureandcommunitymap(Fig1).Wethencross-tabulatedtotalareaburnedineach landclassandcommunitybyignitionsourcetoderivetheamountofincoming(TF-IN),out- going(TF-OUT),andnon-transmittedfire(NonTF).Theresultingdatawerethenusedto PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 7/28 Networkanalysisofwildfiretransmission buildtransmissionnetworkstoanalyzetheconnectivityamongspecificlandtenuresandinto communities.NetworkconstructionandanalysisweredoneinR[56]usingtheigraphpackage [57]. Networksarecomprisedofnodesandedges.Inthisstudynodescorrespondedtolandten- uresandcommunitieswhiletheedgesrepresenteddirectionaltransferoffire(i.e.directed weightednetwork).Nodesrepresentedmultiplepolygonsforagivenlanddesignation;hence theedgesmeasuretheaggregatetransmissionofallthepolygonsofonelandtenuretothe polygonsofotherlandtenures.Networkswereanalyzedattwo‘scales’:thescaleoflargeland tenuresand,thescaleofindividualcommunities.Weseparatedtransmissionoriginatingfrom humanandnaturalignitionswithineachnetwork.Abriefoverviewofnetworkterminology usedinthisanalysiscanbefoundinTable2. Wecalculatedwholenetworkandnode-specificmeasurespertainingtothefrequencyand strengthoflinkages.Thenode-degreemeasuresthenumberoflinkagesforeachnodeand indicateshowcentralanodeiswithinthenetworkandisofteninterpretedasanindicatorof connectivityandinfluence[58].Inthecaseofwildfire,nodedegreerepresentsthenumberof landownersthatcontributewildfiretoaspecificparcel,andtheoverallpotentialcomplexityof managingandresolvingcross-boundaryexposureissuesforparticularcommunitiesorparcels ofland.Networkdensitydescribesthenumberofnodespresentinthenetworkcomparedto themaximumpossible,whichrepresentstheoverallconnectednessinthenetwork.Wealso calculatedthenumberoflinkagestransmittingfireintothelandtenure(in-degree),andthe numberoflinkagesthelandtenurewastransmittingfiretoothernodes(out-degree).Node degreeisthetotalnumberoflinkagesforanode(landtenure),whilein-degreeandout-degree arethenumberofincomingoroutgoinglinkages.Networkswereconstructedandanalyzedat twoscalesofaggregation.Thecoarser-scalegroupingdescribedtransmissionbetweenlarger landownerswithcommunitiesaggregatedintoasinglelandtenure.Thefiner-scalegrouping includedthesamelargelandtenuresandindividualcommunities. Table2. Organizationofriskgovernanceandwildfiretransmissionintonetworks. Function Network Networkscale Riskgovernanceimplications representation Spatialdefinitionoflandscapeparcelin Node Node Defineslandscapeorganizationandthescaleformeasuringwildfire termsoflandtenure transmissionandsharedrisk Numberofwildfirelinkagesamongland Nodedegree Node Potentialcomplexityformanagingfireexposuretransmittedtoand tenures fromsurroundinglandtenures Wildfireexchangebetweenapairofland Directededge Node Magnitudeofrisksharingamongtwolandtenures tenures Numberofincomingwildfirelinkagesfora Nodein-degree Node Numberofsurroundinglandtenuresthatcontributetolocal landtenure exposure Numberofoutgoingwildfirelinkagesfora Nodeout-degree Node Numberofsurroundinglandtenuresthatreceivefirefromthelocal landtenure landtenure Overallwildfireconnectivityamongland Networkdensity Network Measurestheproportionofobservedwildfireconnectionsamong tenures landtenurestothetotalpossible Theimportanceofaparticularlandtenure Centrality Node/network Prioritylandtenureforriskmitigation inthenetwork Networkwidestatisticsdescribelandscape-scalepropertiesrelatedtowildfireconnectivityandsharingofwildfireexposureamonglandtenures. Communitiesareconsideredaspecificlandtenurecategoryinthetableforsimplicity.Nodestatisticsaredescriptorsofindividuallandtenureexposureto wildfireintermsofamount,numberofsources,andoverallconnectivitytootherlandtenures.Thecombinedanalysesofnodeandnetwork-widestatistics canfacilitatecommunityandlandscapeplanningbyrevealingthescaleandconnectivityofwildfiredisturbances. doi:10.1371/journal.pone.0172867.t002 PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 8/28 Networkanalysisofwildfiretransmission Housingexposureandcommunityfireshedcharacterization Communitywildfireexposureoccurredwheresimulatedfirescoincidedwithdeveloped areas(i.e.thecorecommunityandthesurroundingwildlandurbaninterface).Weinter- sectedfireperimetersgeneratedfromthefiresimulationswithcommunitypolygonsand thencalculatedthenumberofstructuresineachcommunitypotentiallyaffected.Thestruc- tureestimateswerecalculatedastheproductoftheproportionofareaofeachcommunity polygonburnedandthestructurecountforthatpolygon.Structuresweregroupedbycom- munity(n=56)allowingasingleignitionpointtocreatewildfireexposureinmultiple communities. Weusefireshedstoexplorethespatialscaleofcommunityfireexposurewithinthestudy area.Wedefinecommunityfireshedsastheareasthatarelikelytotransmitwildfiretocom- munities[36].Usingthesimulationoutputsdescribedabovewecreatedacontinuous smoothedsurfaceofstructureexposureforeachcommunityusingthelogistickrigingalgo- rithmintheRgstatpackageinR3.1.1[56,59].Krigingisbasedonasemi-variogramthatcap- turesobservedspatialdependencebetweenpoints[60,61].Sincethekrigingalgorithmis generalizableweusedittocaptureoccurrencedataasabinarylogitfunction. Thekrigingsurfacesdescribethepredictedlikelihoodthatanignitionoccurringatagiven pointwouldexposestructurestowildfirewithinthatcommunity(i.e.valuesvariedbetween0 and1).Toconvertthekrigingsurfacetoadiscreteboundary(i.e.thefireshed)weuseda thresholdof0.1meanttocaptureignitionlocationswheretherewasatleastanominal(10%) chanceofexposure.Toaccountforareasinthefireshedwhereignitionswererareorabsent weremovedareaswheretheignitionpointdensitywasverylow(i.e.lessthan1.5e-4km-2). Finally,communityfireshedswereintersectedwiththelandtenuremaptocalculatethe fireshedareabylandtenure,andtheproportionofthestudyareathattransmitsfiretothe WUI.Ourmethodfordelineatingfiresheds,ascomparedtoconvexhullsusedbyothers(e.g. [62,63]),eliminatesoutlierignitionsthatrarelythreatencommunitiesandcontributetolarger fireshedsizes. Results Historicalfireactivityandignitionpatterns Analysisofhistoricalfiredataprovidedinsightsintotheseasonalityandspatialdistributionof wildfiresandtherelativefrequenciesofhumanversusnaturalignitionsandresultingburned area.Theresultsconfirmedthatbothhumanandnaturalignitionscontributedsubstantiallyto areaburned,andthateachignitionsourcerequiredadifferentspatiotemporalmodelforthe wildfiresimulations.About16,061haofwildfireburnedwithinthestudyareaeachyearannu- allybasedon11,618ignitions(645ignitionsyr-1)occurringbetweenJanuary1992andDecem- ber2009(Fig3).Lightningresultedinroughlythesameburnedareaashumancausedfires (7,877haversus7,184hayr-1)althoughwithmoreignitions(6,379or354ignitionsyr-1versus 5,239,or291ignitionsyr-1).Lightningcausedignitions(hereafternatural)hadaslightly smalleraveragefiresize(22ha)comparedtohuman(26ha).Ignitionlocationsfromhumans andlightningdifferedsubstantially(Fig3).Humanignitionswereclusteredneartownsand citieswithinthestudyarea,especiallyWarmSprings,LaPineandBend.Naturalignitions werefrequentinthesouth-centralandsoutheastportionofthestudyareawherehumanigni- tionswererelativelysparse.Temporalvariationinignitionswasalsopronounced(Fig4).Nat- uralignitionspeakedinthemiddleofthesummermonths(Fig4C)whereashumanignitions wererelativelymorefrequentinthespringandfall. PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 9/28 Networkanalysisofwildfiretransmission Fig3.Spatialdistributionofhistoricalignitionsbyfirecause.(A)Humanand(B)naturalcausedignitionsinthestudyareabasedonhistoricalignition databetween1992and2009[64],totaling11,618ignitions. doi:10.1371/journal.pone.0172867.g003 Simulatedfireactivity Wesummarizedsimulatedfireactivitytoexaminebroadtrendsinrelationtohistoricalfires. Simulatedfiresburned21,650hayr-1:11,200hayr-1weretheresultofhumancausedignitions; 10,460hayr-1burnedduetonaturallycausedignitions.Firewasmostcommononnational forests(8,554ha)andnativelands(6,710ha),whichtogetheraccountedfor72%ofallland burned.Morethanone-thirdoftheareaburned(8,402ha,39%)resultedfromwildfireevents thatspannedatleastoneboundary.Humancausedfiresburnedcomparativelymoreareaof native,community,privateandprivateindustriallandtenures(Fig5A;Table1).Thisdiffer- encewasmostpronouncedfornativelandsandleastfortheprivatelandtenures.Firesfrom PLOSONE|DOI:10.1371/journal.pone.0172867 March3,2017 10/28
Description: