ebook img

NASA Technical Reports Server (NTRS) 20160006862: Introduction to Space Radiation PDF

3.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20160006862: Introduction to Space Radiation

HematologicalCancerWorkingGroup On-LineSeminar ThursdayJanuary22,2015 INTRODUCTION TO SPACE RADIATION John Norbury NASALangleyResearchCenter,Hampton,Virginia,USA JOHNNORBURY (NASALANGLEY) SPACERADIATION WEDNESDAYJUNE11,2014 1/70 OUTLINE 1 3 SOURCES OF SPACE RADIATION 2 RADIATION & DOSE 3 NUCLEAR & PARTICLE PHYSICS & TRANSPORT 4 MOON, MARS, JUPITER, SATURN 5 CONCLUSIONS JOHNNORBURY (NASALANGLEY) SPACERADIATION WEDNESDAYJUNE11,2014 2/70 3 SOURCES OF SPACE RADIATION 3 sources of space radiation Geo SPE GCR [https://oltaris.larc.nasa.gov] JOHNNORBURY (NASALANGLEY) SPACERADIATION WEDNESDAYJUNE11,2014 3/70 GALACTIC COSMIC RAYS (GCR) - DISCOVERY It all began with a mystery surrounding the continuous & uncontrollable leakage of electrical charge from a well insulated charged gold leaf electroscope. Mystery unexplained since Henry Coulomb noticed in 1785, that charged metal sphere suspended by insulated silk thread did not retain charge. [http://www.school-for-champions.com/experiments/] JOHNNORBURY (NASALANGLEY) SPACERADIATION WEDNESDAYJUNE11,2014 4/70 Galactic Cosmic Rays - Discovery GALACTIC COSMIC RAYS (GCR) - DISCOVERY •  IInn eeaarrllyy ddaayyss eelleeccttrroossccooppeess && eelleeccttrroommeetteerrss aallssoo uusseedd ttoo ssttuuddyy xx--rraayyss,, rraaddiiooaaccttiivviittyy,, eettcc.. X-rays & radioactive emanations •  x-rays & radioactive emanations ionize ionize gases gases Strong sources of radiation cause •  Strong sources of radiation cause leaves in electroscope to come leaves in electroscope to come together together (after electroscope initially charged) (afterelectroscopeinitiallycharged) •  Strength of radiation can be measured Strength of radiation can be by how quickly leaves come together measured by how quickly leaves come together [Closeetal.,Theparticleexplosion,OxfordUniv.Press,Oxford,1994] JOHNNORBURY (NASALANGLEY) SPACERADIATION WEDNESDAYJUNE11,2014 5/70 GALACTIC COSMIC RAYS (GCR) - DISCOVERY Galactic Cosmic Rays - Discovery Researchers found trouble: Turn of all Crookes tubes, •  Researchers found trouble: remove all radiation sources, •  turn of all Crookes tubes, remove all remove light radiation sources, remove light • Stsitlillle elleeccttrroossccooppee lelaevaevse fsallf atollgether together [Lederman&Schramm,Fromquarkstothecosmos, Freeman,NewYork,1989] •  At end of C19 Wilson connected this to ionization of End of C19 Wilson connected this to ionization of surrounding air surrounding air. W•  itWhitdhi sdcisocvoeveryryo off rraaddiiooaacctitviivtyit y& &finfidnindgi nthgatt heaartthe aitsrethlf citosnetlafinceodn tained minmuinteutter atrcaecesso off rraaddiiooaacctitvivee mmataertiearlsia, list ,wiatsw maisstamkiesntlayk tehonulyghtht ought that source of ionization of air was this radioactive material of that source of ionization of air was this radioactive material of earth. earth. JOHNNORBURY (NASALANGLEY) SPACERADIATION WEDNESDAYJUNE11,2014 6/70 GALACTIC COSMIC RAYS (GCR) - DISCOVERY Implied that leakage rate (rateatwhichleaves cometogether) should be smaller at higher altitudes 1910 Father Thomas Wulf took electroscope to top of Eiffel tower Observed 64% drop in leakage rate But expected much more reduction (radiation should be absorbed in air) Deduced that radiation from ground (gradually decreasing with height) competing with radiation coming down through atmosphere Obvious thing was to go to greater heights [Norbury,2010] (Wulf did not!) JOHNNORBURY (NASALANGLEY) SPACERADIATION WEDNESDAYJUNE11,2014 7/70 Galactic Cosmic Rays - Discovery GALACTIC COSMIC RAYS (GCR) - DISCOVERY Starting in 1911, Victor Hess (Austrian) was firSstta rtotin pgrinod19u1c1e, VdiectcoirsHiveess r(eAsuuslttrsia n) was from bfiarlsltotoonp rfolidguhcetsd ienc iwsivheicrehs uhlets from balloon ascendflieghdt swinithw heiclehchteroasscceonpdeeds with electroscopes Radiation first decreased as balloons •  radiation first decreased as balloons went up went up •  but by 5,000 ft. radiation was more intense than at sBeuat bleyv5e,l0 00 ft. radiation was more •  by 17,50in0t eftn.s readthiaatnioant isnecareleavseeld several times By 17,500 ft. radiation increased •  Hess hyspeovtehreaslitzimede s“extra-terrestrial source of radiation” Hess hypothesized “extra-terrestrial •  named Cosmic Radiation by Millikan in 1925 source of radiation” Named Cosmic Radiation by Millikan in 1925 [Friedlander,Nature483,400,2012] JOHNNORBURY (NASALANGLEY) SPACERADIATION WEDNESDAYJUNE11,2014 8/70 6 littlesubsequentnucleartransformations.Thereisalsoapri- ferent. Nevertheless,atsuchanaccelerator,thenonthermal maryCRelectroncomponentandatGeVenergiesitsflux powerlawdistributionoftheCRsshouldgrowoutofthe is two orders of magnitude below that for protons. Most thermaldistributionsomewhereabovethegasthermalen- impressively,theall-particleenergyspectrumextendsover ergy. ThiscanbeseeninFig. 5whichshowsananalytical morethan11ordersofmagnitudeinenergy. Itistheproto- calculationofdiffusiveparticleaccelerationatashockwave. typeofanonthermalspectrum,withoutasignforacharac- Theexamplealsoindicatestherelativeenergetics: despite teristicenergyscale(Fig.4). thefactthattheparticlenumberdensityofthegasexceeds Thedifferentialenergyspectrumisapproximatelyapower thatoftheCRsbythreeordersofmagnitude,theinverseis lfarowmintheenSerugny,fEor∝101E0−eV2.75<beEyo<ndfethwe1ra0n15geeVo.fTinhfleusepnecce- rporuogcehslsyctrauneifnodretehdelmeaedantopaarptpicrloexeimneartgeileys.eqTuhaelreefnoerregysudcehna- tralfeaturesatseveral1015eVand1018eV,respectively,may sitiesofthetwocomponents. indicatedifferentparticlesources,oralternatively,different energydependencesofthepropagationconditionsinthesep- arateenergyregions. ThecorrespondingestimateoftheCR energydensityECRintheneighborhoodoftheSolarSys- temisoftheorderof1eV/cm−3,aboutequaltothethermal energydensityEgasoftheInterstellargasaswellasthetyp- icalInterstellarmagneticenergyEmag,measuredbyother GCR COMPOSITION, SPECTmReanUs:MEC,RO∼ERgaIsG∼IENmag.Ihavediscussedthesignifi- canceofthisequalitybefore. 3 regions -HighEnergy<PeV -VeryHighEnergy(knee)PeV-EeV -UltraHighEnergy(ankle)>EeV keV=103eV MeV=106eV Fig.5. Totalenergydistributionofthermalplasma(gas)plusnon- thermalplasma(CRs)nearadiffusivelyacceleratingshockwave: GeV=109eV TeV=1012eV thethermal(Maxwellian)energydistributionjoinsrathersmoothly PeV=1015eV EeV=1018eV tothenonthermalpowerlawCRdistributionatan“injection”en- ZeV=1021eV eOrnglyytshuaptrias-stheevremraalltpimaretsicllaersgaebrothveanthtihseinmjeecatniotnheernmearglyencearngypaErttihc-. ipateinthecollectiveaccelerationprocess(adaptedfromMalkov andVo¨lk,1998;courtesy“SterneundWeltraum”). Tevatron collider 2 TeV cm 10 PeV lab 3.2 CosmicRaysourcespectra,composition ⇒ Large Hadron Collider TheobservedCRenergyspectraarenotnecessarilyidenti- calwiththespectraoftheparticlesastheyareemittedfrom 14 TeV cm 400 PeV lab ⇒ theirsources.Theconnectionbetweenthetwoisrathergiven bytheparticlepropagationproperties. Observationsshow [Volk,ICRC,2001:3] thattheratiobetweentheenergyspectraofCRspallation JOHNNORBURY (NASALANGLEY) SPACEtFRhieAgD.sIp4Ae.TcItTOruNhmeailsl-apaprotiwcleerClaRw,esWnleigErghDytNlyEsSpsDeteAceYtrpuJeUmnNi.nEgF1oa1tr,2aE0f1e4>∼w110019G5/ee7VV0,, p(Froigd.u6c)ts. aFnodrethneeirrgipersimabaoryvep1ar0tiGcleeVs/dneuccrleeaosnesthwisitthranensleartgeys theso-calledKnee,andhardeningatafew1018eV,theso-called directlyintoacorrespondingenergydependenceoftheav- Ankle.(AdaptedfromCroninetal.1997;courtesyS.Swordy.) erageamountofInterstellarmatter“seen”byCRparticles. Ifweassumetheparticlestobeproduceddeeplyinsidethe Howshouldwepicturetheoverallenergydistributionof denseGalacticgasdiskthenthisimpliesashorterresidence thethermalgasplustheCRsastheycoexistinagivenvol- timethereforhigherenergyparticlesthanforthoseoflower umeelementinspace? Thisquestionhasnouniqueanswer energybeforetheyeventuallyescapetoIntergalacticSpace. because, evenifthegasandtheCRsareenergizedatthe Letusnowinadditiontaketheparticlesourcesaswellas sameplaceinacosmicacceleratorlikeaSolarFlareoraSu- theparticlesreleasedfromthemtobeuniformlydistributed pernovaRemnant,theirspatialpropagationcanbeverydif- acrosstheGalacticdiskthatincludesalsotheSolarSystem Hadrons / Pions GCR HIGH ENERGY < PEV •  Maximum cosmic ray intensity •  0.1 - 10 GeV Space radiation problem •  almost no data GCR (primary) composition •  1 - 10 GeV 98% nuclei, 2% e+e− Nuc•l eaTrhceoomryp olenaesnt t : 87% Huynddroegrsetnood 12% He• liu 1m - 10 GeV 1% heavy nuclei GCR origin Emitted in stellar wind & flares & accelerated by supernova shock waves [Simpson,Ann.Rev.Nucl.Part.Sci.33,323,1983] (within our Galaxy) JOHNNORBURY (NASALANGLEY) SPACERADIATION WEDNESDAYJUNE11,2014 10/70

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.