Table Of Content(cid:9)(cid:9)(cid:9)(cid:9)(cid:9)(cid:9)(cid:9)
11111111111111111111111111111111111111111111111111111111111111111111111111
(12) United States Patent (cid:9) (lo) Patent No.: (cid:9) US 9,245,089 B1
Nary et al 45) Date of Patent Jan. 26, 2016
. (cid:9) ( : (cid:9)
(54) STATISTICALLY BASED APPROACH TO (56) (cid:9) References Cited
BROADBAND LINER DESIGN AND
ASSESSMENT PUBLICATIONS
Dittmar et al.: Some Acoustic Results from the Pratt and Whitney
(71) Applicant: The United States of America as
Advanced Ducted Propulsor- Fan I; NASA/TM 1999-209049; 82
represented by the Administrator of
the National Aeronautics and Space PP•*
Gerhold & Inventors: Advanced Computational and Experimental
Administration, Washington, DC (US)
Techniques for Nacelle Liner Performance Evaluation; AIAA 2009-
3168; 15th AIAA/CEAS conf. 2009; pp. 1-22.*
(72) Inventors: Douglas M. Nark, Norfolk, VA (US); Nark et al. inventors: Uncertainty and Sensitivity Analyses of Duct
Michael G. Jones, Newport News, VA Propagation Models; AIAA 2008-2832 (14th ann AIAA/CEAS
(US) conf.; pp. 1-13.*
Nark et al. inventors: Broadband Liner Optimization for the Source
Diagnostic Test Fan; 18th AIAA/CEAS aeroacoustics conference
(73) Assignee: The United States of America as
2012; 33rd AIAA aeroacoustics conference; 13 pp.*
represented by the Administrator of Nark inventor: On Acoustic Source Specification for Rotor-Stator
the National Aeronautics and Space Interaction Noise Prediction; 2010; Conference: 16th AIAA/CEAS
Administration, Washington, DC (US) Aeroacoustics Conference (31st AIAA Aeroacoustics Conference;
17 pp.*
(*) Notice: (cid:9) Subject to any disclaimer, the term of this Jones inventors: Effects of Flow Profile on Educed Acoustic Liner
Impedance; 16th AIAA/CEAS Aeroacoustics Conference; Jun. 7-9,
patent is extended or adjusted under 35
2010; Stockholm; Sweden; 23 pp.*
U.S.C. 154(b) by 305 days.
(Continued)
(21) Appl. No.: 13/781,918
Primary Examiner Hugh Jones
(22) Filed: (cid:9) Mar. 1, 2013 (74) Attorney, Agent, or Firm Andrea Z. Warmbier
(57) (cid:9) ABSTRACT
Related U.S. Application Data
A broadband liner design optimization includes utilizing in-
(60) Provisional application No. 61/679,093, filed on Aug. duct attenuation predictions with a statistical fan source
3, 2012. model to obtain optimum impedance spectra over a number of
flow conditions for one or more liner locations in a bypass
(51) Int. Cl. duct. The predicted optimum impedance information is then
G06G 7148 (2006.01) used with acoustic liner modeling tools to design liners hav-
G06F 17150 (2006.01) ing impedance spectra that most closely match the predicted
B64D 33102 (2006.01) optimum values. Design selection is based on an acceptance
(52) U.S. Cl. criterion that provides the ability to apply increasing weight-
CPC .... G06F 1715095 (2013.01); B64D 203310206 ing to specific frequencies and/or operating conditions. One
(2013.01) or more broadband design approaches are utilized to produce
(58) Field of Classification Search a broadband liner that targets a full range of frequencies and
CPC ................................................... G06F 17/5095 operating conditions.
USPC .............................................................. 703/8
See application file for complete search history. 13 Claims, 8 Drawing Sheets
20 (cid:9)
_...Optir um
18 (cid:9) ~-~
Cutback 28PF
C 1
14
12
10
8 (cid:9) 1
!C3 (cid:9) 6
CI 4 (cid:9) #, '
f- 2 (cid:9)
0
2000 4000 6000 8000 101000
Frequency [l-lzl
(c) Takeoff flow condtion
US 9,245,089 B1
Page 2
(56) (cid:9) References Cited Nark inventor: Fan Noise Prediction with Applications to Aircraft
System Noise Assessment; 15th AIAA/CEASAeroacousticsConfer-
PUBLICATIONS ence (30th AIAA Aeroacoustics Conference) May 11-13, 2009,
Miami, Florida; 16 pp.*
Watson and inventors: Assessment of 3D Codes for Predicting Liner Parrott, T. L, et el., "Parallel-element Liner Impedances for Improved
Attenuation in Flow Ducts; 2008-2828 Conference: 14th AIAA/ Absorption of Broadband Sound in Ducts," Journal of Noise Control
CEAS Aeroacoustics Conference (29th AIAAAeroacoustics Confer- Engineering, 1995, pp. 183-195, vol. 43, No. 6.
ence); 20 p.* Nark, D. M., et al., "The Development of the Ducted Fan Noise
Feiler Recent Results About Fan Noise Its Generation, Radiation Propagation and Radiation Code CDUCT-LARC," AIAA, 2003, pp.
and Suppression; Ann. Meeting of the Soc. of Eng. Sci.; 19th; Oct. 1-8.
27-29, 1982; Rolla, MO; United States; 25 pp.* Zlavog. G., et al., "Source Effects on Attenuation in Lined Ducts, Part
Farassat et al. and inventor: Open Rotor Noise Prediction Methods at L A Statistically Based Computational Approach," Journal of Sound
NASA Langley A Technology Review; FF, MHD, AT & DMN and Vibration, 2007, pp. 113-138, vol. 307.
AIAA 2009.nb; 2009; 20pp.* Nark, D. M., et al., "On Acoustic Source Specification for Rotor-
Mani et al. and inventors: Improved Inlet Noise Attenuation byAlter- Stator Interaction Noise Prediction," AIAA, 2010, pp. 1-17.
ation of Boundary Layer Profiles; Williamsburg, Virginia; ACTIVE
04; Sep. 20-22, 2004; 16. pp.* * cited by examiner
(cid:9)
U.S. Patent (cid:9) Jan. 26,2016 (cid:9) Sheet I of 8 US 9,245,089 BI
15
Duct
Propagation
(CDC"-LaRC)
45
Predicted Duct
Liner Propagation
Performance (CDUCT-LaRC)
50
Liner
Fabrication
and Testing
Fig. I
(cid:9)
U.S. Patent (cid:9) Jan. 26,2016 (cid:9) Sheet 2 of 8 US 9,245,089 BI
Fig, la Prior Art
-----------
y,
4
----------
_ .... . . ...... (cid:9) Fig, 2 Prior Art
za INN
1101
gv,v 4TH, Q
MS y
Tzk
R."g. 3a Fig. 3b
U.S. Patent (cid:9)
Jan. 26,2016 (cid:9) Sheet 3 of 8 (cid:9) US 9,245,089 BI
0
20
IUD -0.2 18
16
-M 20 14
12
10
0,6 C~
'0 8
6
C
0-0.8 cu 4
2
n
0 (cid:9) 0,2 (cid:9) 0,4 (cid:9) 0,6 (cid:9) 0,8 (cid:9) 1 2000 4000 6000 8000 10000
Normalized Resistance Frequency [Hzl
(a) Optimum Impedance (b) Optimum Attenuation
Fig. 4a F19.4b
0.5
f 20 -
O
0 18 -
16-
14-
-0 -M 12-
M 10
E 8
0 6.
:Z -1
4-
2-
0
-1 50
. 0 0.5 (cid:9) 1 (cid:9) 1.5 (cid:9) 2 2,5 :E 200 0 4000 6000 8000 10000
Normalized Resistance Frequency [Hz]
(a) Optimum Impedance (b) Optimum Attenuation
Fig.
Fig. 5a 5b
U.S. Patent (cid:9) Jan. 26,2016 (cid:9) Sheet 4 of 8 (cid:9) US 9,245,089 BI
2
1.5
_0
0.5
E
n
-1.4
2000 4000 6000 8000 10000
Frequency (Hz)
(b) Normalized Reactance
Fig. 6b
--28
32
33
30C
I
hj
28
Fig. 7
U.S. Patent (cid:9)
Jan. 26,2016 (cid:9) Sheet 5 of 8 (cid:9) US 9,245,089 BI
2.0 - 2.0
u 1.6
C:
1.5 - (cid:9) 1.2
---------
0.8 --
a)
CC 0.4 - E3
a) 0.0- -----------------
C3
E3 (cid:9)
-0.4
EL- -8
0
o -1.2:-
C3
0.0 . (cid:9) . (cid:9) . (cid:9) . (cid:9) . (cid:9) . (cid:9) . (cid:9) . (cid:9) . (cid:9) . (cid:9) . Z -1.6'
2000 4000 6000 80001 000 2000 4000 6000 8000 10000
FreuencK [Hz Frequency [Hz
(a) Normalized (cid:9) esis]t ance (b) Normalized Reactan]c e
Fig. 8a Fig. 8b
2.0 - 2.0
-
1.5 43 1.2
U
0.8 --
w
CC cc 0.4
-01.0.
-a0) 0.0 --------------------
- - -- - -0.8
3.- E
1-
0
6 -1.2 -
Z 13
0.0 -1.6 -
2000 4000 6000 8000100 2000 4000 6000 800010000
Frequency [Hz] Frequency [Hz]
(a) Normalized Resistance (b) Normalized Reactance
Fig. 9a Fig. 9b
wU2 .0- a) 2 .0-
-
1 .6
.T 1.5 - 1.2 :
w 03 --
0 (cid:9)
cr- 0.4 -- El
Oj 1.0 - b -0 0.0 ---------------------
E ------------------------- E -0.8
® "0 -1.2
0.01 - Z -1.6
~
2000 4000 6000 800010000 2000 4000 6000 8000 10000
Frequency [Hz] Frequency [Hz]
(a) Normalized Resistance Normalized Reactance
(b)
Fig. I Oa Fig. I Ob
U.S. Patent (cid:9) Jan. 26,2016 (cid:9) Sheet 6 of 8 (cid:9) US 9,245,089 BI
2.0 - 0.8 -
0.4 -
.~Q 1.5 - (cid:9) -0- -------- U
(0 0.0 -
W
------------
CC
01.0 --a -0.4 -
-(NV 1 (cid:9)D C3 (1)
N
= -0.8-
0.
E0
0
Z
0.0
.... Z -1.6
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
FreuencK[Hz Frequency [HzI
]
(a) Normalized (cid:9) esistance (b) Normalized Reactance
Fig. I I a Fig. 11 b
no_
-
.4L1n 1.5 - ru 0.4 :
OD,
cc
-01 .0 13 -0A
N C)
N N -03
M
E 0.5
- (cid:9) -------------------------- E -1.2
0
0
Z
0.0 Z: (cid:9) -1.6
..... (cid:9) ......
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Frequency [Hz] (cid:9) Frequency [Hz]
(a) Normalized Resistance (cid:9) (b) Normalized Reactance
Fig. 12a (cid:9) Fig. 12b
-- O.,Sr (cid:9)
2. 0, (cid:9)
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Frequency [Hz1 (cid:9) Frequency [Hz]
(a) Normalized Resistance (cid:9) (b) Normalized Reactance
Fig. 13a (cid:9) Fig. 13b
U.S. Patent Jan. 26, 2016 Sheet 7 of 8 US 9,245,089 B1
20 20
Optimum
18 __ Cutback_[2BPFI 18 _____ Cutback [2BFI
16 X16
14 14
12 12
Cis
10 M 10
8
m6
4
2 2
0 0
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Frequency rHz Frequency [ zI
(a) Approach flow condtio (b) Cutback floe condtion
Fig. 14a Fig(cid:9) b
(cid:9)
(cid:9) (cid:9)
U.S. Patent
Jan. 26, 2016 Sheet 8 of 8 US 9,245,089 B1
20 20
Optimum t6 u
18 o dl 18
----- Br adban CIE ra an
16 16
1 X14
'= 12 12
10 10
8 8
6 6
4 5
Q
2 2
'
0 0
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Frequency [Hz] Frequency [Hz]
() Approach flow c®n tin () Cutback flow cn in
Fig. 15a Fig. 15b
2000 4000 6000 8000 10000
Freuenc [ z
(c) Ta e (cid:9) flow c (cid:9) tin
Fig.