Atmos. Meas. Tech.,5,377–388,2012 Atmospheric www.atmos-meas-tech.net/5/377/2012/ Measurement doi:10.5194/amt-5-377-2012 ©Author(s)2012. CCAttribution3.0License. Techniques Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network A.Smirnov1,2,A.M.Sayer2,3,B.N.Holben2,N.C.Hsu2,S.M.Sakerin4,A.Macke5,N.B.Nelson6,Y.Courcoux7, T.J.Smyth8,P.Croot9,P.K.Quinn10,J.Sciare11,S.K.Gulev12,S.Piketh13,R.Losno14,S.Kinne15,and V.F.Radionov16 1SigmaSpaceCorporation,Lanham,Maryland,USA 2NASAGoddardSpaceFlightCenter,Greenbelt,Maryland,USA 3GoddardEarthScienceTechnologyandResearch–GESTAR,Columbia,Maryland,USA 4InstituteofAtmosphericOptics,Tomsk,Russia 5LeibnizInstituteforTroposphericResearch,Leipzig,Germany 6UniversityofCalifornia,SantaBarbara,California,USA 7Universite´ delaRe´union,SaintDenisdelaRe´union,France 8PlymouthMarineLaboratory,Plymouth,UK 9LeibnizInstituteofMarineSciences,Kiel,Germany 10NOAAPMEL,Seattle,Washington,USA 11LaboratoiredesSciencesduClimatetdel’Environnement,Gif-sur-Yvette,France 12P.P.ShirshovInstituteofOceanology,Moscow,Russia 13UniversityoftheWitwatersrand,Johannesburg,SouthAfrica 14Universite´ deParis7etUniversite´ deParis12,Creteil,France 15InstituteforMeteorology,UniversityofHamburg,Hamburg,Germany 16ArcticandAntarcticResearchInstitute,SaintPetersburg,Russia Correspondenceto: A.Smirnov([email protected]) Received: 22November2011–PublishedinAtmos. Meas. Tech.Discuss.: 5December2011 Revised: 3February2012–Accepted: 6February2012–Published: 17February2012 Abstract. TheMaritimeAerosolNetwork(MAN)hasbeen satellite-basedAODmeasurements. Thebasicrelationships collecting data over the oceans since November 2006. The are similar for all the wind speed sources considered; how- MANarchiveprovidesavaluableresourceforaerosolstud- ever,thegradientoftherelationshipvariesbyaroundafactor iesinmaritimeenvironments. Inthecurrentpaperweinves- oftwodependingonthewinddataused. tigatecorrelationsbetweenship-borneaerosolopticaldepth (AOD) and near-surface wind speed, either measured (on- board or from satellite) or modeled (NCEP). According to 1 Introduction ouranalysis,windspeedinfluencescolumnaraerosoloptical depth, although the slope of the linear regression between The World Ocean is the largest source of natural aerosol. AODandwindspeedisnotsteep(∼0.004–0.005), evenfor Accurateestimationofsea-sprayaerosolproduction, evolu- strong winds over 10ms−1. The relationships show signif- tion and removal processes is important for understanding icant scatter (correlation coefficients typically in the range theEarth’sradiationbudget, aerosol-cloudinteractions, and 0.3–0.5); the majority of this scatter can be explained by visibilitychanges(LathamandSmith,1990;O’Dowdetal., the uncertainty on the input data. The various wind speed 1999; Haywood et al., 1999; de Leeuw et al., 2000). The sources considered yield similar patterns. Results are in windspeedisthemajordriverbehindtheproductionofnat- good agreement with the majority of previously published ural marine aerosol (Lewis and Schwartz, 2004). The ma- relationshipsbetweensurfacewindspeedandship-basedor rine aerosol concentration and size distribution are strongly PublishedbyCopernicusPublicationsonbehalfoftheEuropeanGeosciencesUnion. 378 A.Smirnovetal.: Effectofwindspeedonaerosolopticaldepthoverremoteoceans Fig.1. LatitudinaldependenceofAODseriesacquiredatleast200kmfromthenearestlandmass(a),andAODdependenceonship-based windspeed(b)duringtheFebruary–April2008cruiseoftheR/VPolarstern. dependent on wind speed (Blanchard and Woodcock, 1980; partly,byuncertaintiesinfoamformationanditslatitudinal Gathman, 1982; Lovett, 1978), however, the dependence of distribution(AnguelovaandWebster,2006),byaprocessof columnaraerosolopticaldepth(AOD)onwindspeedismore quality control that excludes some residual cloud contami- difficult to detect and quantify, because of scores of differ- nation(ZhangandReid,2010),bytheaccuracyofradiative ent factors influencing AOD (Smirnov et al., 1995). Estab- transfer models used (Melin et al., 2010), and by more ac- lishingcorrectrelationshipsbetweenAODandnear-surface curate accounting for surface reflectance effects in satellite wind speed will help tune global aerosol transport models retrievals(Sayeretal.,2010). (Jaegleetal.,2011;Madryetal.,2011;FanandToon,2011), Therefore it is useful to utilize the available archive atmosphericcorrectioninocean-colorstudies(Zibordietal., of ship-based AOD measurements over the oceans ac- 2011),validateAODsretrievedfromsatellitemeasurements quired within the framework of Maritime Aerosol Network (Kahn et al., 2010; Kleidman et al., 2012), and understand (Smirnov et al., 2009), and analyze AOD in conjunction biogeochemicalcycles(MeskhidzeandNenes,2010). with information on near-surface wind speed from vari- Recentlyanincreasedinterestinaerosolopticaldepthover ous sources: measured onboard, simulated by the National the oceans and its dependence on wind speed manifested CenterforEnvironmentalPrediction(NCEP),andestimated itself in a number of publications. Satellite-derived and frommeasurementstakenbytheAdvancedMicrowaveScan- coast or island acquired AODs have been studied by Mulc- ningRadiometer(AMSR-E)aboardAquasatellite. ahyetal.(2008), Glantzetal.(2009), Lehahnetal.(2010), Huang et al. (2010), O’Dowd et al. (2010), Kiliyanpilakkil and Meskhidze (2011), Grandey et al. (2011), Adames et al.(2011),andSayeretal.(2012).Power-lawandlinearrela- 2 Datasetsusedinthisstudy tionshipsbetweenAODandwindspeedwereestablishedal- thoughsamplingissues,uncertaintiesinretrievalalgorithms, MANaccumulatedmorethan2500daysofship-basedAOD and/orinfluenceofthechosenislandlocationsgaveanindi- measurementsoveraperiodofseveralyears(Smirnovetal., cationthattheproblemisfarfrombeingsolvedandthereis 2009, 2011). MAN deploys hand held Microtops II sun- notyetconsensus. photometers(Morysetal.,2001)andutilizescalibrationand Satellite-based measurements are undoubtedly the only dataprocessingprocedurestraceabletoAERONET(Holben tool(atleastatpresent)forglobalaerosolopticaldepthcov- et al., 1998, 2001). The estimated uncertainty of the opti- erage. Howeverbecauseofexistingsatelliteretrievalbiases cal depth in each channel does not exceed ±0.02 (Knobel- (Smirnovetal.,2006,2011)theground(ocean)-basedtruth spiesseetal.,2004),primarilyduetointer-calibrationagainst is needed to correct or constrain them. For example, in the AERONET reference CIMEL instruments that are accurate southern latitudes (south of 40◦) the sunphotometer AODs to within ∼0.01 in the visible and near-infrared (Eck et al., are low compared with satellite retrievals (Smirnov et al., 1999). ThusMANprovideshigh-qualityAODswithknown 2006, 2011). This discrepancy can be explained, at least uncertainty. A public domain web-based archive dedicated Atmos. Meas. Tech.,5,377–388,2012 www.atmos-meas-tech.net/5/377/2012/ A.Smirnovetal.: Effectofwindspeedonaerosolopticaldepthoverremoteoceans 379 Fig.2. LatitudinaldependenceofAODdailyaveragesusedinthisstudy(a),andlatitudinaldependenceofcorrespondingdailyaveraged ship-basedwindspeed(b). Fig. 3. Differences between NCEP and ship-based wind speed as a function of ship-based wind speed (a) and wind speed frequency of occurrences(%)foreachsubset(b). to the network activity can be found at: http://aeronet.gsfc. thisprocedurebackwardsintime,weadditionallycomputed nasa.gov/new web/maritime aerosol network.html. windspeedsaveragedoverthe24hperiodpriortoeachAOD The ship-based meteorological data collected onboard measurement. were provided by the cruise PIs. Meteorological measure- The Advanced Microwave Scanning Radiometer-Earth mentsweremadewiththestandardequipmentatleasthourly. Observing System (AMSR-E) instrument on the NASA Then linear interpolation was applied to match in time sun- EarthObservingSystem(EOS)Aquasatelliteprovidesnear- photometermeasurements. surface wind speed (Wentz and Meissner, 2007). These The National Center for Environmental Prediction data are provided at a spatial resolution of 25km, sepa- (NCEP)windspeeddatausedwas1◦ by1◦ horizontalreso- rately for daytime and nighttime overpasses. In this study, lutionoutputevery6h(Derberetal.,1991). Inouranalysis, thedatapointwhichtheMANmeasurementlieswithinwas foreachmeasuredAODtheNCEPnear-surface(10m)wind used. Because the AMSR-E sampling is spatially incom- speed data points were linearly interpolated in space and plete, some MAN data lacked a corresponding AMSR-E time to provide the “instantaneous” wind speed. Repeating windspeedretrieval. www.atmos-meas-tech.net/5/377/2012/ Atmos. Meas. Tech.,5,377–388,2012 380 A.Smirnovetal.: Effectofwindspeedonaerosolopticaldepthoverremoteoceans Fig.4.ScatterdensityhistogramsofAODat500nm(series)(a–e)andAngstromparameter(f)versusthesurfacewindspeed. TheinfluenceofwindspeedonAODinthewholeatmo- all meteorological parameters are simply the same over the spheric column is a very difficult problem. A link between range of wind speeds considered. Discriminating between opticalturbidityandparticlegenerationbywindisnoteasy air masses permits a more rigorous analysis of the link be- todetect, sinceitcanbemaskedbythebackgroundaerosol tween wind speed and optical depth (Smirnov et al., 1995). (ofcontinentaloriginincoastalareas,forexample). Accord- ThecorrelationsbetweenAODandwindspeedinmaritime ingly, surface generation effects can be clearly noticed only tropicalairmasseswerefoundtobesignificantlylargerthan whenmeasurementsaretakeninareasonablytransparentat- those obtained in a study of the same Pacific Ocean data mosphere. Ideally a relationship between spectral aerosol (Villevalde et al., 1994), where no air mass discrimination optical depth and wind speed needs to be ascertained in the was made. This means that the correlation coefficient in- same air mass in order to minimize the influence of other creased when the data were characterized by more uniform meteorological parameters on optical properties, or when atmosphericconditions. Atmos. Meas. Tech.,5,377–388,2012 www.atmos-meas-tech.net/5/377/2012/ A.Smirnovetal.: Effectofwindspeedonaerosolopticaldepthoverremoteoceans 381 Fig.5.ScattergramsofdailyaveragedAODat500nm(a–e)andAngstromparameter(f)versusthesurfacewindspeed. www.atmos-meas-tech.net/5/377/2012/ Atmos. Meas. Tech.,5,377–388,2012 382 A.Smirnovetal.: Effectofwindspeedonaerosolopticaldepthoverremoteoceans Table1.Listofcruises,cruiseareas,andnumberofmeasurementdaysusedinouranalysis. Cruisename Cruisearea Timeperiod N ofdays PI R/VAkademikFedorov2005-2006 SouthAO Dec2005 1 B.HolbenandS.Sakerin R/VAkademikFedorov2006–2007 SouthAO Dec2006 5 B.HolbenandS.Sakerin R/VAkademikFedorov2007–2008 SouthAO,SouthIO Dec2007–Apr2008 17 B.HolbenandS.Sakerin R/VAkademikFedorov2008–2009 SouthAO Dec2008 1 B.HolbenandS.Sakerin R/VAkademikFedorov2009–2010 SouthernO,SouthAO Dec2009;Feb2010 2 B.HolbenandS.Sakerin R/VAkademikIoffe2009 SouthAO Nov2009 9 B.HolbenandS.Gulev R/VAkademikIoffe2010 NorthAO Sep2010 4 B.HolbenandS.Gulev R/VAkademikSergeyVavilov SouthAO Nov–Dec2004 17 B.HolbenandS.Sakerin RRSJamesClarkRoss2008 SouthAO Oct–Nov2008 8 B.HolbenandT.Smyth RRSJamesCook2009 SouthAO Nov2009 10 B.HolbenandT.Smyth RRSJamesCook2010 SouthAO Nov2010 6 B.HolbenandT.Smyth R/VKnorr2008 NorthAO Mar–Apr2008 5 P.Quinn R/VMarionDufresne2007 SouthIO Nov–Dec2007 14 B.HolbenandJ.Sciare R/VMarionDufresne2008 SouthIO Nov–Dec2008 11 B.HolbenandR.Losno R/VMarionDufresne2009 SouthIO Nov–Dec2009 8 Y.Courcoux R/VMarionDufresne2010 SouthIO Jan,Aug–Sep2010 18 Y.Courcoux R/VMelville2009–2010 SouthPO Jan–Feb2010 8 B.HolbenandN.Nelson R/VPolarstern2008 SouthernO,SouthAO Feb–Apr2008 16 B.HolbenandP.Croot R/VPolarstern2008 SouthAO Apr–May2008 9 B.HolbenandA.Macke R/VPolarstern2009 SouthAO Apr–May,Nov2009 27 B.HolbenandA.Macke R/VPolarstern2010 SouthAO Apr2010 10 B.HolbenandS.Kinne R/VRonaldH.Brown2007–2008 NorthandSouthPO Dec2007–Feb2008 26 B.HolbenandN.Nelson R/VRonaldH.Brown2008 SouthPO Oct–Nov2008 10 P.Quinn M/VSAAgulhas SouthernO,SouthAO Dec2007–Jan2008 13 B.HolbenandS.Piketh In other words, the relationship between AOD and wind speed depends on many factors we simply do not know or cannotfullyaccountfor(atleastempirically). Agoodexam- pleispresentedinFig.1aandb. TheR/VPolarsterncruise considered took place in the winter of 2008 in the South Atlantic and Southern Ocean (Dr. Peter Croot was a PI for AODmeasurements). Figure1ashowsthelatitudinaldepen- dence of AOD series (a series can have one or more mea- surementspoints,typicallyfiveormore,madewithagapof under2min;seeSmirnovetal.,2009fordetails)acquiredat least200kmfromthenearestlandmass,andFig.1bpresents adependenceonship-basedwindspeed. Itisclearthatthere isnoobviousrelationshipbetweenAODandwindspeedfor the subset considered. AODs are quite low while the wind speed ranges from 3 to 14ms−1. Additional consideration ofthesubsetacquiredwithin39◦–65◦Sdidnotproduceany correlationeither. Thereforeinouranalysiswedecidedtodeploythefollow- ingstrategy. Becauseallfactorsinfluencingthedependence of AOD on wind speed cannot be accounted for, we sim- ply considered only data presumably not influenced by ur- Fig.6.Maritimeaerosolopticaldepthasafunctionofwindspeed. ban/industrial continental sources, dust outbreaks, biomass burning, or glaciers and pack ice. In the Northern Atlantic welimitedtheareatothelatitudinalbeltbetween40◦–60◦N; in the Southern Atlantic we considered data acquired to the South of 10◦S; in the Indian Ocean data set included only Atmos. Meas. Tech.,5,377–388,2012 www.atmos-meas-tech.net/5/377/2012/ A.Smirnovetal.: Effectofwindspeedonaerosolopticaldepthoverremoteoceans 383 Fig.7.Scatterdensityhistogrambetweensimulatednoise-freewindspeedandnoise-freeAOD(a),noisyAODandnoise-freewindspeed(b), noisywindspeedandnoise-freeAOD(c)andnoisywindspeedsandnoisyAODat500nm(d).Pointsweregeneratedassumingthesteady- staterelationshipinTable3,τa(500nm)=0.0047×w+0.034(showninblack),andthenaddingGaussiannoiseofamplitude2ms−1tothe windsand0.02totheAOD. cruises South of 9◦S. An additional restriction imposed on ispresentedinFig.3a. TherelativenegativeoffsetofNCEP thedatasetwasexclusionofpointstakencloserthantwode- is evident, although it is not critical for our study. About greesfromthenearestlandmass.Amongtheselectedcruises, 66%ofthedifferencesarewithin2ms−1. The“series”and we excluded one (presented in Fig. 1), which showed no “daily” wind speed differences are comparable. Figure 3b relationship between AOD and wind speed. For any other shows histograms of wind speeds used in our further anal- individual cruise considered, the slope of the AOD scatter- ysis. High winds (greater than 10ms−1) account for over plotversuswindspeedwasfoundtobeatleast0.002sm−1. 20%ineachsubsetconsidered. This“cherry-picking”isjustifiedbytheultimategoaloffind- ing the most robust possible dependence of AOD on wind speedovertheoceans. Table1presentsfinaldatasetusedfor 3 Results ouranalysis. Overallweconsidered239measurementdays. Figure 2a shows AOD daily averages as a function of lati- Figures 4 and 5, and Table 2, illustrate regressions between tude, and Fig. 2b presents corresponding daily averages of aerosol optical depth, Angstrom parameter (negative of the theship-basedwindspeed. logarithmicgradientofAODwithwavelength,overthevis- The NCEP wind speed data were interpolated in space iblespectrum)andwindspeed. Morethan1100seriesfrom and time to match the AOD measurement series. In addi- 239daysofaerosolopticaldepthmeasurementscontributed tiontothe“instantaneous”windspeeds(windspeedsatthe tothestatisticspresented. Overallwecanconcludethatthe timesmatchingtheAODseries),weusedwindspeedsaver- relationshipbetweenAODandwindspeedislinear,butcor- agedoverthe24hpriortoeachAODmeasurement,andalso relations are not strong (non-linear relationships were con- the subset of “steady-state” wind speeds (defined similar to sidered,butdidnotresultinstrongercorrelations). Evenfor Madryetal.,2011,i.e.,standarddeviationforthedailyaver- thecaseof“steady-state”winds,correlationscoefficientsdo agedwindspeedshouldnotexceed2ms−1 forwindspeeds not increase significantly. These values, although not high, less than 10ms−1, or 3ms−1 for wind speeds greater than are statistically significant at a 99% confidence level. Re- 10ms−1). NCEP data were compared with the ship-based sultsobtainedforthe“daily”and“series”datasetsarecom- meteorological information for cruises considered, and this parable. Averaging AOD over a day removes some noise, www.atmos-meas-tech.net/5/377/2012/ Atmos. Meas. Tech.,5,377–388,2012 384 A.Smirnovetal.: Effectofwindspeedonaerosolopticaldepthoverremoteoceans Table2.Regressionstatisticsofspectralopticalparametersversuswindspeed. Relationship Datasource a b R∗ Datasource a b R∗ τa(440nm)=a×w(ship)+b series 0.0020 0.062 0.23 dailyaverage 0.0022 0.061 0.29 τa(500nm)=a×w(ship)+b 0.0023 0.052 0.28 0.0024 0.052 0.33 τa(675nm)=a×w(ship)+b 0.0029 0.038 0.38 0.0031 0.035 0.47 τa(870nm)=a×w(ship)+b 0.0027 0.039 0.37 0.0030 0.037 0.46 τa(440nm)=a×w(NCEP)+b series 0.0034 0.052 0.31 dailyaverage 0.0035 0.052 0.35 τa(500nm)=a×w(NCEP)+b 0.0037 0.044 0.35 0.0036 0.045 0.39 τa(675nm)=a×w(NCEP)+b 0.0043 0.029 0.44 0.0043 0.028 0.50 τa(870nm)=a×w(NCEP)+b 0.0042 0.030 0.45 0.0043 0.028 0.52 τa(440nm)=a×w(<24h>,NCEP)+b series 0.0042 0.044 0.35 dailyaverage 0.0040 0.047 0.38 τa(500nm)=a×w(<24h>,NCEP)+b 0.0043 0.037 0.39 0.0041 0.039 0.41 τa(675nm)=a×w(<24h>,NCEP)+b 0.0049 0.023 0.47 0.0048 0.022 0.53 τa(870nm)=a×w(<24h>,NCEP)+b 0.0049 0.023 0.48 0.0049 0.022 0.55 τa(440nm)=a×w(steady−state,NCEP)+b series 0.0045 0041 0.40 dailyaverage 0.0044 0.042 0.44 τa(500nm)=a×w(steady−state,NCEP)+b 0.0047 0.034 0.43 0.0045 0.035 0.47 τa(675nm)=a×w(steady−state,NCEP)+b 0.0052 0.021 0.50 0.0051 0.019 0.56 τa(870nm)=a×w(steady−state,NCEP)+b 0.0051 0.021 0.51 0.0052 0.019 0.58 τa(440nm)=a×w(AMSR)+b series 0.0033 0.056 0.28 dailyaverage 0.0040 0.050 0.38 τa(500nm)=a×w(AMSR)+b 0.0036 0.047 0.33 0.0040 0.043 0.40 τa(675nm)=a×w(AMSR)+b 0.0041 0.034 0.40 0.0046 0.028 0.50 τa(870nm)=a×w(AMSR)+b 0.0036 0.038 0.37 0.0045 0.029 0.50 α=a×w(ship)+b series −0.036 0.706 0.35 dailyaverage −0.035 0.732 0.36 α=a×w(NCEP)+b −0.051 0.789 0.39 −0.048 0.813 0.38 α=a×w(<24h>,NCEP)+b −0.059 0.867 0.41 −0.054 0.875 0.41 α=a×w(steady−state,NCEP)+b −0.059 0.863 0.42 −0.053 0.864 0.40 α=a×w(AMSR)+b −0.038 0.648 0.31 −0.042 0.747 0.34 ∗R–isalinearcorrelationcoefficient. associated in part with uncertainties in the AOD and wind In Fig. 6 the relationship between AOD and NCEP wind speed, andinpartwithnaturalvariability, andmakescorre- averagedwithinprevious24h(“currentstudy”)iscompared lationcoefficientsslightlyhigher(bylessthan0.1). Various to other studies. The diversity between different relation- winddatasourcesandwindspeedsubsetsyieldedverysimi- ships established in the literature is evident. However, over larresults. AsexpectedAngstromparameterdecreaseswith the range 0–10ms−1, the typical change in AOD is simi- wind speed. An influx of large particles is responsible, at larinmostparameterizations(∼0.04at500nm),andconsis- leastinpart,forthisanticorrelation. tentwiththeship-bornemeasurementsfromthisstudy. The The slope of the linear regression of AOD versus main differences between studies are linked to the baseline wind speed lies in the range 0.002–0.005 for the various AOD for low-wind conditions, and some nonlinearities at wavelengths, cruises, and wind datasets considered. As ex- high wind speeds. In the former case, this may be partially pected (because the wind speed’s history is important) the explained by local aerosol sources or satellite retrieval bi- dataset that uses wind speed averaged within previous 24h ases,specifictoeachindividualstudy’sdataset. Inthelatter periodand“steady-state”winddatasetyieldedhigherslopes. case, this may often be linked to a paucity of data for high Table 3 presents regression statistics compiled from vari- wind speeds, such that the determination of the form of the ous publications. Our results are consistent with the major- relationshipislesswell-defined(althoughasmentionedpre- ity of previously reported results for ship-based and island- viously, over 20% of the MAN AODs are for wind speeds based measurements, although being different from Mulc- of10ms−1 orgreater). Further,datafromcoastalsitesmay ahy et al. (2008). We would like to note that additional be more strongly affected by enhanced foam from breaking considerationofstricter“steady-state”windconditions(with wavesathighwindspeeds,andsatellitebiases(Sayeretal., standard deviation less than 1ms−1 within previous 24h) 2010; Smirnov et al., 2006, 2011) may be more extreme in did not change the slope at 500nm, but slightly increased suchcases. Theseeffectswouldnotbeexpectedtoinfluence it to 0.0058 at 870nm. Some of the satellite-derived AODs theMANAODsinthesameway. yieldedsteeperslopes,althoughwebelievethesetobeanar- ToinvestigatetheextenttowhichuncertaintiesintheAOD tifact of the satellite-derived AOD overestimation (Smirnov andwindspeedcontributetothelowcorrelations, anumer- etal.,2006,2011). ical simulation was performed, based on the “steady-state” Atmos. Meas. Tech.,5,377–388,2012 www.atmos-meas-tech.net/5/377/2012/ A.Smirnovetal.: Effectofwindspeedonaerosolopticaldepthoverremoteoceans 385 Table3.Regressionstatisticsofaerosolopticaldepthversuswindspeed. Reference AOD Wind Region Relationship a b source source Currentpaper SP Ground Global τa(500nm)=a×w(ship)+b 0.0023 0.052 Model τa(500nm)=a×w(instantaneous,NCEP)+b 0.0037 0.044 Model τa(500nm)=a×w(<24h>,NCEP)+b 0.0043 0.037 Model τa(500nm)=a×w(steady−state,NCEP)+b 0.0047 0.034 Satellite τa(500nm)=a×w(AMSR)+b 0.0036 0.047 PlattandPatterson(1986) SP Ground CapeGrim τa(500nm)=a×w+b 0.0028 0.046 Villevaldeetal.(1994) SP Ground Pacific τa(500nm)=a×w+b 0.0033 0.101 Smirnovetal.(1995) SP Ground Pacific τa(500nm)=a×w+b 0.0036 0.123 WilsonandForgan(2002) SP Ground CapeGrim τa(500nm)=a×w+b 0.0035 −0.006 Smirnovetal.(2003) SP Ground Midway τa(500nm)=a×w<24h>+b 0.0068 0.056 Shinozukaetal.(2004) SP Ground Pacific τa(500nm)=b+4.9×10−5w3−3.7×10−5w2 0.017 Muclahyetal.(2008) SP Ground MaceHead τa(500nm)=b+5.5×10−4w2.195 0.060 Lehahnetal.(2010) SP Satellite Global,islandsites τac(500nm)=a×w+b 0.0070 0.015 Adamesetal.(2011) SP Ground Atlantic τa(500nm)=a×w+b 0.0066 0.027 Sayeretal.(2012) SP Model Global,islandsites τa(500nm)=a×w+b 0.0031 0.070 Glantzetal.(2009) SeaWIFS Model Pacific τa(500nm)=b+0.00016×w2.3 0.036 Huangetal.(2010) AATSR Model Global τa(550nm)=a×w+b 0.004 0.085 Lehahnetal.(2010) MODIS Satellite Global τa(500nm)=a×(w−4)+b 0.013 0.080 O’Dowdetal.(2010) MODIS Satellite Pacific τa(550nm)=b+0.00022×w2.47 0.114 τa(550nm)=b+0.033×w0.72 −0.004 Indian τa(550nm)=b+0.0097×w1.09 0.042 τa(550nm)=b+0.011×w1.04 0.040 KiliyanpilakkilandMeskhidze(2011) CALIPSO Satellite Global τa(532nm)=0.15/(1+6.7×e−0.17∗w) Grandleyetal.(2011) MODIS Model NAtlantic τa(550nm)=a×w+b 0.0097 0.050 SAtlantic τa(550nm)=a×w+b 0.0111 0.041 AATSR Model NAtlantic τa(550nm)=a×w+b 0.0089 0.099 SAtlantic τa(550nm)=a×w+b 0.0034 0.081 relationship in Table 3, τ (500nm)=0.0047×w+0.034. This last number is similar to the correlations observed in a First,a50000-memberGaussiandistributionofwindspeeds this study, suggesting the principle factor decreasing corre- with mean 7.93ms−1 and standard deviation 2.96ms−1 lation from unity for the MAN and wind data studied here (corresponding to the “steady-state” wind distribution in areuncertaintiesintheinputdata(ratherthanothermeteoro- Fig. 3), with any resulting negative wind speeds removed, logicaleffects),andthatthenoiseontheAODismorecriti- wasgenerated. Thesamplesizegivesstatisticsrobusttotwo calforthispurpose. HalvingthemagnitudeoftheGaussian significantfigures. ThiswasthenusedtocalculatetheAOD, noiseusedfortheperturbationsincreasesthislastcorrelation assuming the aforementioned wind speed/AOD relationship to 0.76, indicating the effect of noise on the correlations wasaperfectpredictor. couldbemuchreducedwithmorepreciseinputdata. Next, the wind and AOD distributions were perturbed by Performingalinearleast-squaresfittotheperturbednoisy adding Gaussian noise (zero mean in both cases, standard datagivestherelationshipτa(500nm)=0.0031×w+0.047, deviation2ms−1 forwindspeed,and0.02forAOD).These i.e., an increase of the intercept and suppression of the gra- uncertaintiesarereasonablyrepresentativeoftheuncertainty dient as compared to the true underlying relationship. This intheinputdata(e.g.,Knobelspiesseetal.,2004,Wallcraftet resultisconsistentwiththeobservationfromthisstudythat al.,2009;Sayeretal.,2012).Perturbednegativewindspeeds with increasing levels of temporal averaging to decrease orAODswerethensettozero,aswouldlikelybeusedasthe noise(instantaneoustodailyorsteady-stateNCEPdata),gra- minimumvaluetoreportinsuchanAODorwinddataset. dientsbecomestrongerandinterceptssmaller, andsuggests thatuseofonlyinstantaneousdataforsuchanalyseswillre- The resulting distributions of data are shown in Fig. 7. sult in an overestimate of the baseline maritime AOD, and Correlatingthenoisywindspeedswiththe“true”simulated underestimateoftheresponsetochangesinthewindspeed. AODs give R=0.82 (Fig. 7c); correlating true wind speeds with noisy AODs gives R=0.56 (Fig. 7b); and correlating noisywindspeedswithnoisyAODsgivesR=0.47(Fig.7d). www.atmos-meas-tech.net/5/377/2012/ Atmos. Meas. Tech.,5,377–388,2012 386 A.Smirnovetal.: Effectofwindspeedonaerosolopticaldepthoverremoteoceans 4 Conclusions produced by Remote Sensing Systems and sponsored by the NASA Earth Science MEaSUREs DISCOVER Project and the OuranalysisoftheMaritimeAerosolNetworkdatashowed AMSR-E Science Team. Data are available at www.remss.com. a linear relationship between aerosol optical depth over the Gert Konig-Langlo from Alfred Wegener Institute for Polar and oceans and wind speed for a wind speed range 0–15ms−1. Marine Research (Bremerhaven, Germany) is acknowledged for There is no indication of a non-linear power-law or expo- providing the meteorological data from R/V Polarstern. British OceanographicDataCentreisacknowledgedforprovidingAMT19 nential relationship between those quantities for any of the and 20 meteorological data (the data were supplied to BODC by wind datasets (ship-based, NCEP, satellite-based) consid- ChrisBarnard,GarethKnightsandJonSeddon). ered. However, the gradient of the relationship varies by around a factor of two depending on the wind data used. Editedby:A.Kokhanovsky This highlights that the derivation of such relationships is sensitivetonotonlytheAODdatasource,butalsothewind datasource,whichmayexplainsomeofthevariationshown References withintheliterature. Variouswindspeedsubsets,instantaneousanddailyaver- Adames,A.F.,Reynolds,M.,Smirnov,A.,Covert,D.S.,andAck- erman, T. P.: Comparison of MODIS ocean aerosol retrievals agedAODsyieldedsimilarregressionstatisticswhichproves withship-basedsunphotometermeasurementsfromthe“Around therobustnessofourconclusions. Itisnoteworthythat,un- the America’s” expedition, J. Geophys. Res., 116, D16303, like in Smirnov et al. (2003) the wind speed range consid- doi:10.1029/2010JD015440,2011. eredherewassignificantlywider–upto15ms−1forNCEP Anguelova, M. D. and Webster, F.: Whitecap coverage from andAMSR-E,andupto20ms−1forwindsmeasuredonthe satellite measurements: A first step toward modeling the vari- ship. ability of oceanic whitecaps, J. Geophys. Res., 111, C03017, Ourfindingsareconsistentwiththepreviouslyreportedre- doi:10.1029/2005JC003158,2006. sults,onlydifferingsignificantlyfromMulcahyetal.(2008) Blanchard,D.C.andWoodcock,A.H.:Theproduction,concentra- andO’Dowdetal.(2010)forhighwindspeeds(>10ms−1). tionandverticaldistributionofthesea-slataerosol, Ann.N.Y. However, we expect that the future release of the MODIS Acad.Sci.,338,330–347,1980. Collection 6, which takes near-surface wind speed into de Leeuw, G., Neele, F. P., Hill, M., Smith, M. H., and Vignati, E.:Productionofseasprayaerosolinthesurfzone,J.Geophys. account when determining ocean surface reflectance, will Res.,105,29397–29409,doi:10.1029/2000JD900549,2000. change the conclusions reported by O’Dowd et al. (2010) Derber, J. C., Parrish, D. F., and Lord, S.: The new global oper- in terms of reducing the wind-speed dependence in the re- ational analysis system at the National Meteorological Center, trieved AOD (Mishchenko and Geogdzhayev, 2007; Kleid- WeatherForecast.,6,538–547,1991. manetal.,2012). TherelationshipbyMulcahyetal.(2008) Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., overestimates aerosol optical depth, predicting AOD∼0.27 O’Neill, N. T., Slutsker, I., and Kinne, S.: Wavelength depen- atwindspeed15ms−1, possiblyduetothebreakingwaves denceoftheopticaldepthofbiomassburning,urban,anddesert atthecoastalsiteandonly14measurementdayscontributing dustaerosol,J.Geophys.Res.,104,31333–31350,1999. totheoverallstatistics. Fan, T. and Toon, O. B.: Modeling sea-salt aerosol in a coupled As found in previous studies, there is considerable scat- climateandsectionalmicrophysicalmodel: mass,opticaldepth terinplotscomparingAODandwindspeed,leadingtocor- andnumberconcentration,Atmos.Chem.Phys.,11,4587–4610, doi:10.5194/acp-11-4587-2011,2011. relations typically of order 0.3–0.5. Our results show that Gathman, S. G.: Optical properties of the marine aerosol as pre- the known uncertainties in the AOD and wind data used dictedbytheNavyaerosolmodel,Opt.Eng.,22,57–62,1983. would be sufficient to degrade the observed correlation be- Glantz,P.,Nilsson,E.D.,andvonHoyningen-Huene,W.:Estimat- tweenvariables,whichwereperfectlycorrelatedintruth,to ingarelationshipbetweenaerosolopticalthicknessandsurface around0.5.Thisnoisealsoaffectedthecoefficientsoffit,de- windspeedovertheocean,Atmos.Res.,92,58–68,2009. creasingthegradientascomparedwiththe“true”case.Thus, Grandey, B. S., Stier, P., Wagner, T. M., Grainger, R. G., and itisplausiblethat,overtheremoteocean,thetruestrengthof Hodges, K.I.: Theeffectofextratropicalcyclonesonsatellite- correlationbetweenmaritimeAODandwindspeed,andthe retrievedaerosolpropertiesoverocean,Geophys.Res.Lett.,38, magnitude of the response, could be significantly stronger L13805,doi:10.1029/2011GL047703,2011. thanobservedinthesestudies. Haywood,J.,Ramaswamy,V.,andSoden,B.:Troposphericaerosol climateforcinginclear-skysatelliteobservationovertheoceans, Acknowledgements. The authors thank Hal Maring (NASA Science,283,1299–1303,1999. Headquarters) for his support of AERONET. The authors thank Holben B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Set- Kirk Knobelspiesse (Columbia University and NASA GISS) and zer,A.,Vermote,E.,Reagan,J.A.,Kaufman,Y.,Nakajima,T., anonymous reviewer for constructive comments. Measurements Lavenu,F.,Jankowiak,I.,andSmirnov,A.:AERONET–Afed- onboard R/V Marion-Dufresne were supported by the French eratedinstrumentnetworkanddataarchiveforaerosolcharacter- Polar Institute (IPEV). NCEP Reanalysis data provided by the ization,RemoteSens.Environ.,66,1–16,1998. NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. AMSR-E data are Atmos. Meas. Tech.,5,377–388,2012 www.atmos-meas-tech.net/5/377/2012/