ebook img

NASA Technical Reports Server (NTRS) 20120001451: Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20120001451: Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes

Effects of mesh irregulaties on accuracy of finite-volume discretization schemes Boris Diskin∗ JamesL. Thomas† Theeffectsofmeshirregularitiesonaccuracyofunstructurednode-centeredfinite-volumediscretizationsare considered.Thefocusisonanedge-basedapproachthatusesunweightedleast-squaresgradientreconstruction withaquadraticfit. Forinviscidfluxes,thediscretizationisnominallythirdorderaccurateongeneraltrian- gularmeshes.Forviscousfluxes,theschemeisanaverage-least-squaresformulationthatisnominallysecond- orderaccurateandcontrastedwithacommonGreen-Gaussdiscretizationscheme.Gradienterrors,truncation errors, anddiscretizationerrorsareseparatelystudiedaccordingtoapreviouslyintroducedcomprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropicgridstypicalofadaptedgrids,andanisotropicgridsoveracurvedsurfacetypicalofadvancing- layergrids. Themesheswithintheclassesrangefromregulartoextremelyirregularincludingmesheswith randomperturbationof nodes. Recommendations aremadeconcerningthediscretizationschemesthat are expectedtobeleastsensitivetomeshirregularitiesinapplicationstoturbulentflowsincomplexgeometries. I. Introduction Traditionalmesh-quality metrics tend to assess meshes without taking into account the type of equations being solved, solutions, or the desired computational output. The most widely-used mesh quality metrics are geometric in nature, considering shape, size, angles, aspect ratio, skewness, Jacobian, etc., of the mesh elements. Additional considerationsincludevariationsbetweenmeshelements,suchascell-to-cellandface-to-faceratios,linesmoothness, etc. Some schoolsof thoughtarguethat an accurateand efficientsolutioncan be obtainedonly on“pretty” meshes similartoeitherstructuredCartesianmeshesortomeshescomposedfromidenticalperfectelements(perfecttriangles, tetrahedrals,etc.)ThisideaisindirectcontradictionwiththecommonComputationalFluidDynamics(CFD)practice, in whichaccurate solutionsare computedon practicalmeshesthat wouldbe characterizedas unacceptableby most geometric mesh quality metrics. Moreover,the most powerfulstate-of-artmethodfor improvingsolution accuracy, output-based mesh adaptation,1 tends to produce “ugly” meshes, but provides vast improvements of the accuracy- per-degree-of-freedom ratio.2 It is widely recognized today that mesh quality indicators should involve sufficient information about the solution.3–5 In fact, it is envisioned that the connection should go even deeper and involve modern error-estimation techniques that take into account the specifics of the discretization method in use and the desiredcomputationaloutput. Historically, mesh quality analyses were first performed for finite-difference and finite-element methods. It is notstraightforwardtotranslatethoseapproachestofinite-volumediscretizations(FVD)thatrepresentthestateofart in CFD computations. While there is no doubt that certain mesh characteristics critically affect accuracy of CFD solutionsandgradients,theprecisenatureofthisinfluence(whataffectswhat)isfarfromclear. Forfinite-differenceapproachesmostofthemeshqualitymethodstrytoestablishconnectionsbetweenmeshand truncationerror.6,7 ThetruncationerroranalysisisoftenappliedtoFVDschemesaswell.8 However,ithasbeenlong ∗NationalInstituteofAerospace(NIA),100ExplorationWay,Hampton,VA23681,USA,[email protected]. Also DepartmentofMechanicalandAerospaceEngineering,UniversityofVirginia,Charlottesville,VA22904,USA.SupportedbyNASAFundamental AeronauticsProgram,SupersonicsProject,NRAContractNNL07AA23C(PI:Prof.N.K.Yamaleev). †ComputationalAeroSciencesBranch,NASALangleyResearchCenter,MailStop128,FellowAIAA,[email protected]. 1of18 AmericanInstituteofAeronauticsandAstronautics known,thattruncationerrorsofFVDschemesonunstructuredgridsarenotreliableestimatorsofdiscretizationerrors. Thesupra-convergenceofdiscretizationerrorsobservedandstudiedforatleast50yearsindicatesthatdesign-order accurate FVD solutions can be computed on unstructured grids even when truncation errors exhibit a lower-order convergenceor,insomecases,donotconvergeatall.9–11 The theory and applications of mesh quality assessments are well developed and widely used within the finite- element community. While initial groundbreaking work focused on pure geometrical mesh-quality metrics, such as large angles,12,13 the later developmentstake solution into account.14 The standard finite-element estimates use Sobolevnormsthat simultaneouslyestimate errorsin the solutionand its derivatives. These estimates mightbe too conservative because recent finite-volume computationsindicate that accurate solutions can be obtained in spite of formallypooraccuracyofgradients.15–17 Previously,theeffectsofmeshirregularitiesonaccuracyofunstructuredfinite-volumediscretizationswereeval- uated for various common node-centered and cell-centered schemes.15,16,18–20 The focus here is on an edge-based node-centeredapproachthatusesunweightedleast-squaresgradientreconstructionwitha quadraticfit. Forinviscid fluxes, the discretizationis nominallythirdorderaccurateongeneraltriangularmeshes.21,22 Forviscousfluxes, the schemeisanaverage-least-squaresformulationthatiscontrastedwithacommonGreen-Gaussdiscretizationscheme. These schemescan be formulatedas edge-basedschemesongeneralsimplicial grids.23 The inviscidand averaged- least-squaresviscousdiscretizationscan be formulatedas edge-basedon arbitrarygrids, includinggridsused in ag- glomerationmultigrid.24,25 Gradienterrors,truncationerrors,anddiscretizationerrorsareseparatelystudiedaccordingtoapreviouslyintro- ducedcomprehensivemethodology.15,16Alinearconvectionequation, (a·∇)U =f, (1) withavelocityvector,a,servesasamodelforinviscidfluxes. Poisson’sequation ∆U =f, (2) subjecttoDirichletboundaryconditionsservesasamodelforviscousfluxes. Themethodofmanufacturedsolutions is used, so the exact solutionsand forcing functions, f, are known. Solutions are chosen to be smooth on all grids considered,i.e.,noaccuracydegradationoccursbecauseofalackofsolutionsmoothness. The paper is organized as following. First, grids, FVD schemes, and accuracy measures are briefly described. Then,numericalstudiesoftheFVDaccuracymeasuresarereportedforgridsofthreeclassesrepresentingisotropic, adapted,andturbulent-flowgrids. Conclusionsandrecommendationsareofferedattheend. II. Grids Computationalstudiesareconductedontwo-dimensionalgridsrangingfromstructured(regular)gridstoirregular gridscomposedofarbitrarymixturesoftrianglesandquadrilaterals. Highlyirregular(badquality)gridsaredeliber- atelyconstructedthroughrandomperturbationsofstructuredgrids. Threeclassesofgridsareconsidered. Class(A) involvesisotropic grids in a rectangular geometry. Class (B) involveshighly anisotropic grids, typical of those en- counteredingridadaptation. Class(C)involvesadvancing-layergridsvaryingstronglyanisotropicallyoveracurved body,typicalofthoseencounteredinhigh-Reynoldsnumberturbulentflowsimulations. Four basic grid types are considered: (I) regular quadrilateral(i.e., mapped Cartesian) grids; (II) regular tri- angulargridsderivedfromtheregularquadrilateralgridsbythesamediagonalsplittingofeachquadrilateral;(III) randomtriangulargrids,inwhichregularquadrilateralsaresplitbyrandomlychosendiagonals,eachdiagonalorien- tationoccurringwithaprobabilityofhalf;and(IV)randommixed-elementgrids,inwhichregularquadrilateralsare randomlysplitornotsplitbydiagonals;thesplittingprobabilityishalf;incaseofsplitting,eachdiagonalorientation ischosenwithprobabilityofhalf.Nodesofanybasic-typegridcanbeperturbedfromtheirinitialpositionsbyrandom shifts,thusleadingtofouradditionalperturbedgridtypeswhicharedesignatedbythesubscriptpas(I )-(IV ). The p p 2of18 AmericanInstituteofAeronauticsandAstronautics randomnodeperturbationineachdimensionistypicallydefinedas 1ρh,whereρ ∈ [−1,1]isarandomnumberand 4 histhelocalmeshsizealongthegivendimension.TherepresentativegridsofClass(A)areshowninFigure1. (a)Type(I):regularquadri- (b)Type(II):regulartrian- (c)Type(III): randomtri- (d) Type (IV): random lateralgrid. gulargrid. angulargrid. mixedgrid. (e) Type (Ip): perturbed (f) Type (IIp): perturbed (g)Type(IIIp): perturbed (h) Type (IVp): perturbed quadrilateralgrid. triangulargrid. randomtriangulargrid. randommixedgrid. Figure1. Typicalregularandirregulargrids. III. Finite-VolumeDiscretizationSchemes TheFVDschemesarederivedfromtheintegralformofaconservationlaw (F·nˆ) ds= fdΩ, (3) I Z ∂Ω Ω whereΩisacontrolvolumewithboundary∂Ω,nˆistheoutwardunitnormalvector,anddsistheareadifferential.The generalFVDapproachrequirespartitioningthedomainintoasetofnon-overlappingcontrolvolumesandnumerically implementingequation(3)overeachcontrolvolume. Node-centereddiscretization schemes are considered, in which solutions are defined at the primal mesh nodes. Thecontrolvolumesareconstructedaroundthemeshnodesbythemedian-dualpartition: thecentersofprimalcells areconnectedwiththe midpointsofthesurroundingfaces. Thesenon-overlappingcontrolvolumescovertheentire computationaldomainandcomposeameshthatisdualtotheprimalmesh.Thenode-centereddiscretizationschemes employthesamedegreesoffreedomongridsofalltypes;thus,accuracyisnotinfluencedbyavariationindegreesof freedom. ForinviscidEq.1,thenumericalflux, Fh·nˆ ≡Uh(a·nˆ), (4) atacontrol-volumeboundaryiscomputedacco(cid:0)rdingto(cid:1)theflux-difference-splittingscheme,26 1 1 Uh(a·nˆ)= (U +U )(a·nˆ)− |(a·nˆ)|(U −U ), (5) L R R L 2 2 3of18 AmericanInstituteofAeronauticsandAstronautics where first and second terms represent the flux average and the dissipation, respectively; U and U are the “left” L R and “right” solutions linearly reconstructed at the edge midpoint by using solutions and gradients defined at the nodesconnectedbythe edge. Theedge-basedflux integrationscheme approximatesthe integratedflux throughthe two faceslinkedatthe edgemidpointby Uh(a·n), wheren is the combined-directed-areavector. The integration schemeiscomputationallyefficient. Forexactfluxes,theintegrationschemeprovidesthird-orderaccuracyonregu- larsimplicialgridsoftype(II),second-orderaccuracyonregularquadrilateralandgeneralsimplicialgridsoftypes (I),(III),(II ), and (III ), and first-order accuracy on mixed-elementand perturbed quadrilateralgrids of types p p (IV),(IV ), and (I ).18,19,27 Second-orderunweighted least-squares (ULSQ) gradient reconstructionemploying a p p quadratic fit is used. It was shown that with such gradients, third order discretization accuracyis achieved on sim- plicialgrids.21,22 Theresultsinthereferenceswereobtainedwiththeweightedleast-squaresgradients,butthethird order accuracy has been confirmed by the authors of this paper for ULSQ gradients as well. In (infrequent) cases whentheleast-squaresstencilofthenearestedge-connectedneighborsisnotsufficientforaquadraticfit,thestencil isexpandedtoincludeneighborsofneighbors. Notethatfiveneighborsaretypicallysufficientforaquadraticfit. On triangulargridsconsideredin this study, the averagenumberof edge-connectedneighborsis six; and the minimum numberofedge-connectedneighborsforaninteriornodeonanygridisfour. ForviscousEq.2,thenumericalfluxisdefinedas Fh·nˆ ≡(∇rU ·nˆ), (6) (cid:0) (cid:1) where ∇rU is the gradient reconstructed at the face of the control volume. Two gradient reconstruction schemes areconsidered: (1)TheGreen-Gauss(GG)scheme15,28 computesgradientsattheprimalelementsandusesthemin face-gradientcomputationsatcontrol-volumeboundaries.TheGGschemeiswidelyusedinnode-centeredcodesand equivalenttoaGalerkinfinite-element(linear-element)discretizationfortriangular/tetrahedralgrids.(2)Theaveraged least-squares(Avg-LSQ)schemeaveragesthe ULSQ gradientsatthe nodesto computethe face gradient.24,25 Both schemesusetheedgegradienttoaugmentthefacegradientandincreasetheh-ellipticity29ofthediffusionoperator15,23 and,thus,avoidcheckerboardinstabilities. Thegradientaugmentationisintroducedintheface-tangentform.25 Note that when the edge is normalto the face, the edge gradientis the only contributorto the flux. For the GG scheme, the augmentationdoes not affect the face gradientwithin a triangular element. It has been shown18,19,24,25 that the schemespossesssecond-orderaccuracyforviscousfluxesongeneralmixed-elementgrids. IV. Accuracy Measures TheaccuracyofFVDschemesisanalyzedforknownexactormanufacturedsolutions. Theforcingfunctionand boundaryvaluesarefoundbysubstitutingthissolutionintothegoverningequations,includingboundaryconditions. Thediscreteforcingfunctionisdefinedatthenodes.Boundaryconditionsareover-specified,i.e.,discretesolutionsat boundarycontrolvolumesand,possibly,attheirneighborsarespecifiedfromthemanufacturedsolution. IV.A. Discretizationerror Themainaccuracymeasureisthediscretizationerror,E ,whichisdefinedasthedifferencebetweentheexactdiscrete d solution,Uh, ofthediscretizedequations(3)andtheexactcontinuoussolution,U, tothecorrespondingdifferential equations, E =U −Uh, (7) d whereU issampledatmeshnodes. IV.B. Truncationerror Anotheraccuracymeasure commonlyused in computationsis truncationerror. Truncationerror, E , characterizes t theaccuracyofapproximatingthedifferentialequation(2). Forfinitedifferences,itisdefinedastheresidualobtained 4of18 AmericanInstituteofAeronauticsandAstronautics aftersubstitutingtheexactsolutionU intothediscretizeddifferentialequations.30 ForFVDschemes,thetraditional truncationerrorisusuallydefinedfromthetime-dependentstandpoint.31,32 Inthesteady-statelimit,itisdefined(e.g., in[33])astheresidualcomputedaftersubstitutingU intothenormalizeddiscreteequations(3), 1 E = − fhdΩ+ Fh·nˆ ds, (8) t V Z I (cid:0) (cid:1)  Ω ∂Ω  whereV isthemeasureofthecontrolvolume, V = dΩ, (9) Z Ω fh isanapproximationoftheforcingfunctionf onΩ,andtheintegralsarecomputedaccordingtosomequadrature formulas.Truncationanddiscretizationerrorsarerelatedthroughtheerrortransportequation34 L (E )=−E , (10) h d t whereL isthelinearizationofthediscretegoverningequations. h Ithasbeenlongknownthatconvergenceoftruncationerrorsseverelydegradesonirregular(low-quality)meshes. Suchdegradation,however,doesnotnecessarilyimplyalessthandesignorderconvergenceofdiscretizationerrors. Plentifulcomputationalevidenceandasolidbodyoftheoryconcerningtheeffectofsupra-convergenceindicatethat, on irregular grids, the design-order discretization-error convergence can be achieved even when truncation errors exhibitalower-orderconvergenceor,insomecases,donotconvergeatall.9–11 IV.C. Accuracyofgradientreconstruction The accuracy of the gradientapproximationis also important. The accuracy for an ULSQ gradientis evaluated by comparingthereconstructedgradient,∇rU, with theexactgradient,∇U, computedatthenode. Theaccuracyofa GG gradient is evaluated at an element. The reconstructed and exact gradients are compared at the element center computedastheaverageoftheelementvertexes. Inaccuracyevaluation,thegradientreconstructionusesasampling oftheexactsolutionU atthenodesonagivengrid. Theerrorinthegradientreconstructionismeasuredas E =kǫ k, (11) g g wherefunctionǫ istheamplitudeofthegradienterrorevaluatedatanode, g r ǫ =|∇ U −∇U|, (12) g andk·kisanormofinterest. V. ClassA:IsotropicGridsinRectangular Geometry V.A. Gridandsolutionspecifications Sequencesof consistently refined19 grids with 52,92,172,332,652,1292, and 2572 nodesare generatedon the unit square[0,1]×[0,1].Irregularitiesareintroducedateachgridindependently,sothegridmetricsremaindiscontinuous onall irregulargrids. With the randomperturbationrangelimited bya quarterofthe localmesh size, the anglesof triangularelementscanapproach180◦andtheratiooftheneighboringcellvolumescanbearbitrarilyhigh. The exact solutions is U = sin(πx−2πy), so for the inviscid Eq. 1 with a = (2,1), the force is f = 0, and fortheviscousEq.2,f = −5π2sin(πx−2πy). Thenumericaltestsevaluatingtruncationanddiscretizationerrors are performed with boundary conditions over-specified from the manufactured solution for all nodes linked to the boundary. 5of18 AmericanInstituteofAeronauticsandAstronautics V.B. Gradientreconstructionaccuracy Figure2showsthevariationoftheL normofthegradienterror.Asexpected,theULSQgradientreconstructionwith 1 aquadraticfitissecond-orderaccurateonallgrids. TheGGgradientreconstructionissecondorderonlyonperfect gridsoftype(I); onallothergrids,theGGgradientsarefirst-orderaccurate. Allequivalent-ordermethodsprovide verysimilarerrors.Thus,nomeshqualityeffectsareobservedfortheL normofthegradienterroronisotropicgrids. 1 Althoughnotshown,theobservedL normsofthegradienterrorsconvergewiththesameordersasthecorresponding ∞ L norms, but the L norms of GG gradient error on grids of types (III ) and (IV ) are an order of magnitude 1 ∞ p p greater than the L normsof other first-order errors. The latter effectis caused by gradientaccuracydeterioration ∞ ontriangularelementswithobtuseanglesapproaching180◦. Theoretically,withaninfinitesimalprobability,theGG gradienterrormaybecomeinfinitelylargeatanelementwithavanishingvolume. 101 101 (I) (I) (II) (II) (III) (III) 100 (IV) 100 (IV) (I) (I) p p m) (IIp) m) (IIp) Gradient error (L − nor11100−−21 ((123IIsnrIVdItdp p oo)o)rrrddd... Gradient error (L − nor11100−−21 ((123IIsnrIVdItdp p oo)o)rrrddd... 10−3 10−3 10−4 10−4 10−2 10−1 100 10−2 10−1 100 effective meshsize effective meshsize (a)ULSQ-quadraticfitatnode (b)GGatelement Figure2. Accuracyofgradientreconstructiononisotropicgrids.ManufacturedsolutionisU=sin(πx−2πy). V.C. Truncationerrors Thetruncationerrorsareextremelysensitivetomeshquality.ConvergenceratesoftheL normoftruncationerrorsfor 1 inviscidandviscousfluxesareshowninFigures3and4,respectively.Theinvisciderrorsconvergewiththethirdorder onlyonregulartriangularmeshesoftype(II). Onirregulartriangulargridsoftypes(III),(II ),and(III )andon p p perfectquadrilateralgridoftype(I), theinviscidtruncationerrorsconvergewiththesecondorder. Irregularitieson gridswithquadrilateralelements(types(IV),(I ),and(IV ))leadtothezeroth-orderconvergence. p p SimilarsensitivityisobservedforthetruncationerrorsofviscousfluxesdiscretizedbytheAvg-LSQschemewith the second-orderaccurateULSQ gradients(Figures4(a)and 4(b)). Thesecond-orderconvergenceis observedonly onperfectlyregulargridsoftypes(I)and(II). Theconvergencedeterioratestothefirstorderonirregulartriangular gridsand to thezerothorderonmixed-elementandperturbedquadrilateralgrids. For theviscousfluxesdiscretized with theGG scheme(Figures4(c)and4(d)),truncationerrorsdonotconvergeonanybutperfectlyregulargridsof types(I)and(II). NotethatGGschemeproducesidenticaldiscretizationsongridsoftypes(I),(II), and(III).15 Thus,correspondingGGsolutionsandtruncationerrorsongridsoftypes(I)and(II)arealwaysidentical. Different resultsongridsoftype(III)areexplainedbythedifferencesinthedualvolumes. 6of18 AmericanInstituteofAeronauticsandAstronautics 100 100 (II) (I) (III) (IV) 10−1 ((IIIIpIp)) 10−1 ((IIpV)p) 1st ord. 1st ord. Truncation error (L − norm)1111000−−−432 23nrdd oorrdd.. Truncation error (L − norm)1111000−−−432 23nrdd oorrdd.. 10−5 10−5 10−6 10−6 10−2 10−1 100 10−2 10−1 100 effective meshsize effective meshsize (a)Triangulargrids (b)Mixedandquadrilateralgrids Figure3. Inviscidtruncationerrorsonisotropicgrids.ManufacturedsolutionisU=sin(πx−2πy). V.D. Discretizationerrors ConvergenceratesoftheL normofdiscretizationerrorsforinviscidandviscousfluxesareshowninFigures5and6, 1 respectively. Discretization errors for viscous fluxes show no sensitivity to mesh quality. The errors for both Avg- LSQandGGschemesarepracticallyidenticaltotheplottingaccuracyforallgrids.Theaccuracyofinviscidsolutions deterioratesonmesheswithquadrilateralelements.Thisisnotasurprisebecausetheinviscidschemeusedinthisstudy isdesignedtobethirdorderonlyonsimplicialgrids.21,22 Theedge-basedintegrationschemeusedinthisschemeis knowntodeterioratetofirstorderongridsoftypes(I ),(IV),and(IV ).18,19,27 Ontriangulargrids,thediscretization p p accuracyofinviscidsolutionsisnotsensitivetomeshquality. Ifanything,discretizationerrorsaresomewhatsmaller ontopologicallystructuredgridsoftypes(II)and(II ). p VI. ClassB: AnisotropicGridsinRectangular Geometry This section considers FVD schemes on irregular stretched grids generated on rectangular domains. Figure 7 showsanexamplegridwiththemaximalaspectratioA=1000.Asequenceofconsistentlyrefinedstretchedgridsis generatedontherectangle(x,y)∈[0,1]×[0,0.5]inthefollowing3steps. 1. AbackgroundregularrectangulargridwithN =(N +1)×(N +1)nodesandthehorizontalmeshspacing x y h = 1 isstretchedtowardthehorizontalliney = 0.25. They-coordinatesofthehorizontalgridlinesinthe x Nx tophalfofthedomainaredefinedas y =0.25; y =y +hˆβj−(cid:16)N2y+1(cid:17), j = Ny +2,...,N ,N +1. (13) N2y+1 j j−1 y 2 y y Here hˆy = hAx is the minimalmesh spacing between the vertical lines, A = 1000 is a fixed maximal aspect ratio,andβ isastretchingfactorwhichisfoundfromtheconditiony =0.5. Thestretchinginthebottom Ny+1 halfofthedomainisdefinedanalogously. 2. Irregularitiesare introduced by random shifts of interior nodes in the vertical and horizontal directions. The verticalshiftisdefinedas∆y = 3 ρmin(hj−1,hj),whereρisarandomnumberbetween−1and1,andhj−1 j 16 y y y 7of18 AmericanInstituteofAeronauticsandAstronautics 101 101 (II) (I) (III) (IV) (IIp) (Ip) 100 (IIIp) 100 (IVp) 1st ord. 1st ord. Truncation error (L − norm)11100−−21 23nrdd oorrdd.. Truncation error (L − norm)11100−−21 23nrdd oorrdd.. 10−3 10−3 10−4 10−4 10−2 10−1 100 10−2 10−1 100 effective meshsize effective meshsize (a)Avg-LSQ;triangulargrids (b)Avg-LSQ;mixedandquadrilateralgrids 101 101 (II) (I) (III) (IV) (IIp) (Ip) 100 (IIIp) 100 (IVp) 1st ord. 1st ord. Truncation error (L − norm)11100−−21 23nrdd oorrdd.. Truncation error (L − norm)11100−−21 23nrdd oorrdd.. 10−3 10−3 10−4 10−4 10−2 10−1 100 10−2 10−1 100 effective meshsize effective meshsize (c)GG;triangulargrids (d)GG;mixedandquadrilateralgrids Figure4. Viscoustruncationerrorsonisotropicgrids.ManufacturedsolutionisU =sin(πx−2πy). andhj areverticalmeshspacingsonthebackgroundstretchedmesharoundthegridnode. Thehorizontalshift y is introducedanalogously, ∆x = 3 ρh . With these random node perturbations, all perturbedquadrilateral i 16 x cellsareconvex. 3. Eachperturbedquadrilateralisrandomlytriangulatedwithoneofthetwodiagonalchoices;eachchoiceoccurs withaprobabilityofonehalf. Sequences of consistently refined stretched grids with maximum aspect ratio A = 1000 including 9 × 65,17 × 129,33× 257, 65 × 513, and 129 × 1025 nodes have been considered. The corresponding stretching ratios are β ≈1.207,1.098,1.048,1.025,and1.012.Theaspectrationeartheexternalhorizontalboundariesisabout2.7. 8of18 AmericanInstituteofAeronauticsandAstronautics 10−1 10−1 (II) (I) (III) (IV) 10−2 ((IIIIpIp)) 10−2 ((IIpV)p) m) 1st ord. m) 1st ord. Discretization error (L − nor1111000−−−543 23nrdd oorrdd.. Discretization error (L − nor1111000−−−543 23nrdd oorrdd.. 10−6 10−6 10−7 10−7 10−2 10−1 100 10−2 10−1 100 effective meshsize effective meshsize (a)Triangularmeshes (b)Mixedandquadrilateralmeshes Figure5. Invisciddiscretizationerrorsonisotropicgrids.ManufacturedsolutionisU=sin(πx−2πy). (I) (I) (II) (II) (III) (III) 10−2 (IV) 10−2 (IV) (I) (I) m) (IpI) m) (IpI) Discretization error (L − nor11100−−43 ((123IIsnrIVdpItdp p oo)o)rrrddd... Discretization error (L − nor11100−−43 ((123IIsnrIVdpItdp p oo)o)rrrddd... 10−2 10−1 100 10−2 10−1 100 effective meshsize effective meshsize (a)Avg-LSQ (b)GG Figure6. Viscousdiscretizationerrorsonisotropicgrids.ManufacturedsolutionisU=sin(πx−2πy). InthetestsongridsofClass(B)performedwitheitherthemanufacturedsolutionsin(πx−2πy)orextendedover- specificationusedintestsongridofClass(A),theasymptoticbehaviorofthediscretizationserrorsforviscousfluxes wasnotobservedon coarsegrids. Theexhibiteddiscretizationerrorswere uncharacteristicallylow oncoarsegrids, butdidnotconvergewiththeasymptoticorder.ThemanufacturedsolutionhasbeenchangedtoU =cos(πx−2πy). Also only solutions at boundary nodes are over-specified. With these changes, the asymptotic behavior of the dis- cretizations errors for the GG viscous fluxes is established on relatively coarse grids. Note that the force term for inviscidequationsisstillf =0fora=(2,1). 9of18 AmericanInstituteofAeronauticsandAstronautics 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure7. Stretchedgridoftype(IIIp)with9×65nodes. Theconvergenceplotsoftruncationerrorsarenotshownfortestsof Class(B). Thequalitativebehavior(orders ofconvergence)oftruncationerrorsisthesameasonisotropicgrids,showninFigures3and4Themagnitudeofthe errorsisincreasedbythreeordersofmagnitude,proportionaltotheaspectratioA=1000. VI.A. Gradientreconstructionaccuracy 103 103 (I) (I) (II) (II) 102 (III) 102 (III) (IV) (IV) (I) (I) p p m) 101 (IIp) m) 101 (IIp) Gradient error (L − nor∞ 111000−−021 ((123IIsnrIVdItdp p oo)o)rrrddd... Gradient error (L − nor∞ 111000−−021 ((123IIsnrIVdItdp p oo)o)rrrddd... 10−3 10−3 10−4 10−4 10−3 10−2 10−1 10−3 10−2 10−1 effective meshsize effective meshsize (a)ULSQ-quadraticfitatnode (b)GGatelement Figure8. AccuracyofgradientreconstructiononstretchedgridswithmaximumaspectratioA=1000.ManufacturedsolutionisU=cos(πx−2πy). A recent study20 assessed the accuracy of gradient approximations on various irregular grids with high aspect ratio A = hx ≫ 1. The study indicates that for rectangular geometries and functions predominantly varying in hy 10of18 AmericanInstituteofAeronauticsandAstronautics

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.