ebook img

NASA Technical Reports Server (NTRS) 20110010215: Recent Developments in the Radiation Belt Environment Model PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20110010215: Recent Developments in the Radiation Belt Environment Model

JournalofAtmosphericandSolar-TerrestrialPhysics](]]]])]]]–]]] ContentslistsavailableatScienceDirect Journal of Atmospheric and Solar-Terrestrial Physics journalhomepage:www.elsevier.com/locate/jastp Recent developments in the radiation belt environment model M.-C. Foka,n, A. Glocera, Q. Zhenga,b, R.B. Hornec, N.P. Meredithc, J.M. Albertd, T. Nagaie aGeospacePhysicsLaboratory,NASAGoddardSpaceFlightCenter,Greenbelt,MD,USA bDepartmentofAstronomy,UniversityofMaryland,CollegePark,MD,USA cPhysicalScienceDivision,BritishAntarcticSurvey,Cambridge,UK dAirForceResearchLaboratory,Hanscom,MA,USA eDepartmentofEarthandPlanetarySciences,TokyoInstituteofTechnology,Tokyo,Japan a r t i c l e i n f o a b s t r a c t Articlehistory: Thefluxesofenergeticparticlesintheradiationbeltsarefoundtobestronglycontrolledbythesolarwind Received1April2010 conditions.Inordertounderstandandpredicttheradiationparticleintensities,wehavedevelopeda Receivedinrevisedform physics-basedRadiationBeltEnvironment(RBE)modelthatconsiderstheinfluencesfromthesolarwind, 28September2010 ringcurrentandplasmasphere.Recently,animprovedcalculationofwave-particleinteractionshasbeen Accepted30September2010 incorporated.Inparticular,themodelnowincludescrossdiffusioninenergyandpitch-angle.Wefindthat theexclusionof cross diffusioncould causesignificant overestimationof electronfluxenhancement Keywords: duringstormrecovery.TheRBEmodelisalsoconnectedtoMHDfieldssothattheresponseoftheradiation Radiationbelts beltstofastvariationsintheglobalmagnetospherecanbestudied.Weareabletoreproducetherapidflux Stormandsubstorm increaseduringasubstormdipolarizationon4September2008.Thetimingismuchshorterthanthetime Wave-particleinteractions scaleofwaveassociatedacceleration. Spaceweather PublishedbyElsevierLtd. 1. Introduction wasfoundrelatedtothesolarwindspeed(PaulikasandBlake,1979; Reevesetal.,2003)andthedirectionoftheIMFBzduringthestorm TheEarth’sradiationbeltsconsistofenergeticelectron((cid:2)100keV recoveryphase(Ilesetal.,2002).Ontheotherhand,Ukhorskiyand toseveralMeV)andions((cid:2)100keVtoseveralhundredMeV)trapped Sitnov(2008)suggestedthattheouterbeltcanresponddifferentlyto inthe magnetosphere roughlyfrom1.2oLo8. Theenergeticelec- similarsolarwinddriving.Thereisabroadrangeofprocessesthat tronsresidein2distinctregions:theinnerbeltandtheouterbelt, shapetheradiationbelts.Someofthemarenonlinearmechanismsof whichareusuallyseparatedbytheslotregion(1.8oLo3)ofdepleted localparticleacceleration,suchas,interactionswithwhistlermode particlepopulations.Pitch-anglediffusionlossofelectronsbyinter- choruswaves(Summersetal.,2004;OmuraandSummers,2006),and actingwithwhistlermodeplasmaspherichissisbelievedtobethe relativistic electrons drift-resonance with large amplitude, narrow causeoftheslotregion(Lyonsetal.,1972;Albert,1994;Meredithetal., bandwidthPc5waves(Degelingetal.,2008). 2007).Theinnerbeltisrelativelystablewhiletheouterbeltishighly Theintensificationoftheradiationbeltshassignificantspace variablewithgeomagneticactivity.Thefluxesofenergeticelectronsin weatherconsequences.Moderateenergy((cid:2)10–100keV)electrons theouterbeltdecreaseduringthemainphaseofamagneticstormdue can cause surface charging effects and relativistic ((cid:2)0.1–5MeV) toadiabaticeffect(DesslerandKarplus,1961;KimandChan,1997). electrons can cause deep-dielectric charging on space systems Additionalnon-adiabaticprocessesalsocontributetothefluxdecrease (Baker,2001).Therefore,understandingthephysicalprocessesthat inthestormmainphase(Greenetal.,2004;Ukhorskiyetal.,2006). arecontrollingthedevelopmentoftheradiationbeltsduringactive Duringtherecoveryphasethefluxofenergeticelectronscanchange periods and being able to predict their variability have both dramaticallyaswell.Whileapproximatelyhalfofallmoderateand scientificandpracticalsignificance. intensestormscauseanetincreaseinthefluxofenergeticelectronsby Thereexistmultiplesourcesofradiationbeltparticles.Radial afactorof2ormore,approximatelyaquarterofthesestormsresultin diffusion has traditionally been considered to be the leading anetdecreaseinthefluxesbymorethanafactorof2(Reevesetal., transportandenergizationmechanismintheinnermagnetosphere 2003).Thisvariabilityiscausedbyanimbalancebetweenacceleration, (Schulz and Lanzerotti, 1974). However, it has recently been transport,andlossprocessesallofwhichbecomeenhancedduring suggested that electrons can be accelerated efficiently by geomagneticstorms(Horne,2002;Thorneetal.,2005;Horneetal., resonant wave-particle interactions with whistler mode chorus 2006;Summersetal.,2007).Theratioofpost-stormtopre-stormflux waves (Horne and Thorne, 1998; Summers et al., 1998) and fast magnetosonicwaves(Horneetal.,2007). Anumberofkineticmodelshavebeenestablishedtosimulate nCorrespondingauthor.Tel.:+13012861083. the radiation belt dynamics and to provide interpretation for E-mailaddress: [email protected](M.-C.Fok). observablefeatures.Inakineticmodel,theequationfortheparticle 1364-6826/$-seefrontmatterPublishedbyElsevierLtd. doi:10.1016/j.jastp.2010.09.033 Pleasecitethisarticleas:Fok,M.-C.,etal.,Recentdevelopmentsintheradiationbeltenvironmentmodel.JournalofAtmosphericand Solar-TerrestrialPhysics(2010),doi:10.1016/j.jastp.2010.09.033 2 M.-C.Foketal./JournalofAtmosphericandSolar-TerrestrialPhysics](]]]])]]]–]]] distribution function is solved analytically or numerically. One enhancementduringthedipolarizationevent.Inthefollowing,a simpleapproachisbasedonastandardradialdiffusionequation briefdescriptionof theRBEmodelis given.Wethenoutlinethe withdiffusioncoefficientsdrivenbythesolarwindconditionsor algorithm of the ADI method and present the simulation results geomagneticactivity(Lietal.,2001;Albertetal.,2001).Varotsou withcrossdiffusionincluded.FinallywepresenttheRBEsimula- etal.(2005)andHorneetal.(2006)combinedradialdiffusionwith tions of a substorm dipolarization and compare the calculations acceleration and loss due to whistler mode chorus waves and withAkebonoelectrondata. confirmedthatwaveaccelerationbywhistlermodechorusisan importantaccelerationmechanismintheouterradiationbelt.Bya similarapproachbutincludingcrossdiffusiontermsduetochorus 2. Radiationbeltenvironment(RBE)model waves,Albertetal.(2009)simulatedthe9October1990magnetic storm. They found both chorus wave acceleration and radial The RBE model is a kinetic model that solves the bounce- diffusion were required to account for the observed increase in averagedBoltzmannequationtoobtainthedistributionfunctionof relativisticelectronfluxduringtherecoveryphase.Formodelsthat energeticelectrons(Foketal.,2008) coverawiderangeofenergy,driftmotionmustbeconsideredsince convectionisanimportanttransportmechanismforlower-energy @f þ/l_ S@f þ/f_ S @f @t i @l i @f (o50keV) particles (Bourdarie et al., 1997; Zheng et al., 2003; i i Miyoshietal.,2006;Foketal.,2008).Usingtherelativistickinetic 1 @ (cid:4) (cid:2) @f @f(cid:3)(cid:5) modelwithdipolemagneticfield,Miyoshietal.(2006)simulated ¼G@ao G Daoao@aoþDaoE@E thedynamicsofenergeticelectronsduringtheOctober2001storm. 1 @ (cid:4) (cid:2) @f @f (cid:3)(cid:5) (cid:2) f (cid:3) Theyreproducedtheobservedlocaltimefluxasymmetryforhot þG@E G DEE@EþDEao@ao (cid:3) 0:5tb loss cone ð1Þ electrons (30keV). They also concluded that only convective transport and radial diffusion cannot explain the enhancement where ofrelativisticelectronsseenduringstormrecovery. Aconvection-diffusionmodel,namelytheRadiationBeltEnvir- G¼TðaoÞsin2aoðEþEoÞpffiEffiffiðffiffiEffiffiffiþffiffiffiffi2ffiffiffiEffiffioffiffiÞffiffi onment (RBE) model, has been developed to understand the radiation belt dynamics in order to predict the flux variation f¼(t,l,f,M,K),istheaveragedistributionfunctiononthefield I I during active times (Fok et al., 2001, 2005, 2008; Zheng et al., linebetweenmirrorpoints.l andf arethemagneticlatitudeand i i 2003). The RBE model employs time-varying, realistic magnetic local time, respectively, at the ionospheric foot point of the field so that radial diffusion effects due to slow magnetic geomagnetic field line. M is the relativistic magnetic moment p fluctuations and inductive radial transport owing to fast andK¼J= ffi8ffiffimffiffiffiffiffiffiffiMffiffiffiffi,whereJisthesecondadiabaticinvariant.The o magnetic reconfiguration can be modeled. The RBE model was motionoftheparticlesisdescribedbytheirdriftsacrossfieldlines, usedtosimulateasubstorminjectionduringadipolarizationofthe which are labeled by their ionospheric foot points. The inner magnetic field (Fok et al., 2001). Observable features during boundary of l is at 11.81, corresponding to L¼1.06. The outer i substorms, such as dispersionless injection and drift echoes, are edgeofthemodelisboundedbyfieldlineswithl notgreaterthan i successfully reproduced. Electron flux enhancements during 70.21andanequatorialcrossingat10Earthradius(R ),whichever E magnetic storms were also studied using the RBE model (Zheng iscloser.TheMrangeischosentofullyrepresenttheenergiesof etal.,2003;Foketal.,2005,2008).Theyfoundthatenergizationby electrons from 10keV to 6MeV. The K range is chosen to cover theinductiveelectricfieldandbywhistlermodewavesiscrucial the loss cone so that particle precipitations can be estimated as forthefluxincreaseduringmagneticstorms.Asimplifiedversionof well.E istheelectronrestenergy,a istheequatorialpitch-angle, o o theRBEmodeliscurrentlyrunninginreal-timetoprovideradiation andT(a )isgivenby o belt now-casting updated every 15min. The geosynchronous fluxes at longitudes of GOES-11 and 13 are extracted from the Tða Þ¼ 1 Z sm ds ð2Þ RBE real-time run and are plotted together with real-time GOES o Ro 0 cosa electron (40.6MeV) data. The model-data comparison is where R is the radial distance in R of the field line equatorial o E continuallypostedathttp://mcf.gsfc.nasa.gov/RB_nowcast/. crossing.Theintegrationisalongthefieldlinefromtheequatorto Recentdevelopments,discussedinthispaper,expandonpast themirrorpoint.t istheparticlebounceperiod. b workinanumberofways.InpreviousRBEsimulationsofwave- The left hand side of (1) represents the drifts of the particle particleinteractions,onlypureenergyandpurepitch-diffusionare population and the terms on the right hand side of (1) refer to considered(Foketal.,2005,2008).Sincecrossdiffusionmayhavea diffusion and loss. The calculation of the bounce-averaged drift comparableeffecttopurediffusions(AlbertandYoung,2005),the velocities across field lines, /l_ S and /f_ S, were described in RBEmodelhasbeenextendedtoincludecrossdiffusioninenergy i i detailinFokandMoore(1997).Thesedriftsincludegradientand and pitch-angle. We choose to use the Alternating Direction curvaturedrift,E(cid:4)Bdriftfromconvection,andcorotationelectric Implicit (ADI) method (Xiao et al., 2009) to solve the cross fields. In this ‘‘drift’’ approach, the RBE model can simulate the diffusiontermsintheRBEequation.Werevisitthegeomagnetic effects of radial diffusion only if the electric and magnetic field storm on 23–27 October 2002 and quantitatively assess the fluctuationsareproperlyandconsistentlyrepresented. influence of cross diffusion in electron flux enhancement during Theeffectsoftheinductiveelectricfieldduetoatime-varying the recovery phase. Another development in the RBE model is magneticfieldarealsotakenintoaccountimplicitlyinthemodel connectingthemodelwithaglobalmagnetohydrodynamic(MHD) (Foketal.,2005).Wehaveassumedthatfieldlinesarerootedatthe model.Gloceretal.(2009)coupledtheRBEmodelwiththeBlock- ionosphere, so that the inductive electric field there is zero. Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATSRUS) MHD However, the shapes of field lines at higher altitudes vary as a model to simulate radiation belt development during steady functionoftimeaccordingtothemagneticfieldmodel.Iffieldlines solarwindconditionsandduringarealstormevent.Theyfound areperfectconductors,thefieldlinemotionathighaltitudes,e.g., thecoupledcodewasabletocreaterapidinwardtransportonthe at the equator, will generate an induction electric field (E ) of ind timescaleoftensofminutes.Inthiswork,weusetheRBE-BATSRUS theform, codetosimulateasubstorminjectionduringthe3–5September 2008 storm. We examine the timing and location of electron Eind¼(cid:3)vo(cid:4)Bo ð3Þ Pleasecitethisarticleas:Fok,M.-C.,etal.,Recentdevelopmentsintheradiationbeltenvironmentmodel.JournalofAtmosphericand Solar-TerrestrialPhysics(2010),doi:10.1016/j.jastp.2010.09.033 M.-C.Foketal./JournalofAtmosphericandSolar-TerrestrialPhysics](]]]])]]]–]]] 3 electricfieldbyWeimer2000model(Weimer,2001).Magneticand electric fields are updated every 5min according to the instantaneous solar wind condition and Dst index. The bounce- averaged diffusion coefficients are given by the Pitch-Angle and EnergyDiffusionofIonsandElectrons(PADIE)code(Glauertand Horne, 2005). Only resonance with lower-band whistler mode chorus(0.1fceofo0.5fce)isconsidered. Thepresenceof chorus waves is confined between–151 and 151 magnetic latitude. The diffusioncoefficientsarecalculatedasafunctionofLshell,energy, pitch-angle and f /f , the ratio of plasma frequency to the pe ce cyclotron frequency. To calculate f /f , which depends on the pe ce plasma density (n), we have embedded inside the RBE model Fig.1. Anillustrationtoshowthegenerationoftheinductiveelectricfield(Eind) thecoreplasmameodelofOberandGallagher(Oberetal.,1997). duringfield-linere-configuration. The PADIE diffusion coefficients are scaled with a chorus wave intensityof104pT2.Toobtaintheactualdiffusioncoefficients,we wherev andB arethefieldlinevelocityandmagneticfieldatthe o o estimatethechorusintensityatagivenlocationandtimeduring equator.Fig.1isanillustrationonfieldlinemappingchangingwith thestormusingthesurveyofCRRESplasmawavedataforlower- time and the generation of E . Under the frozen-in condition, ind band chorus presented by Meredith et al. (2001, 2003). For our particles initially moving along a particular field line at t will 1 applicationthewavedatawerebinnedinLshell,magneticlocal continue to share the same field line at t when the field line becomesmorestretched,asshowninFig.12.Particlesaredrifting timeand3levelsofmagneticactivity(Kpo2;2rKpo4;KpZ4). InFoketal.(2008),weonlyconsideredpureenergyandpure outward and decelerated in this case, and the first and second pitch-angle diffusion. Recently, we have implemented cross adiabaticinvariantsareconservedifthefieldlinemotionisslow.In diffusion in the RBE model. The cross diffusion terms can be theRBEmodel,electronsareenergizedorde-energizedduringthe solvedusing variousmethods or numerical schemes (Albert and course of varying themagnetic configuration.Theelectron pitch Young,2005;Taoetal.,2008;Xiaoetal.,2009;Shpritsetal.,2009). angleswillchangeaswell. We choose the Alternating Direction Implicit (ADI) method, The first two terms on the right hand side of (1) represent whichwefoundisstable,efficientandeasytoimplement.Inthe particlediffusioninenergyandpitch-anglefrominteractionswith ADIscheme,thecrossdiffusiontermsin(1)arerewrittenas(Xiao plasma waves. When solving these two terms, we first map the particle phase space density from (M,K) to (E,a ) coordinates, etal.,2009) o dpiesrtfroirbmutiodniffbuasciokntointheE(Man,Kd) caooo,rdanindatethse(nFokmeatpalt.h,e199u6p)d.aTthede @@ft ¼ G1@a@ (cid:2)GDaoE@@Ef(cid:3)þG1@@E(cid:2)GDEao@@af (cid:3) o o diffusion terms are followed by losses due to the loss cone, the 1@ðGD~Þ@f 1@ðGD~Þ @f @2f boundaryofwhichisassumedtocorrespondtomirrorheightof ¼G @a @eþG @e @a þ2D~ @a @e o o o 120km.Particlesinthelossconeareassumedtohavealifetimeof ¼^I fþ^I fþ^I f ð5Þ onehalfbounceperiod(0.5t )(Lyons,1973). 1 2 3 b Eq. (1) includes multiple processes of different timescales. We use the method of fractional step or operator splitting to where dsteecpom(Fpokoseettahl.e,1e9q9u3a)t.ioTnosaonldveso(1lv),ewoenlhyaovenetotesrpmeciaftyathferaeclteicotnraicl e¼E=Eo,D~ ¼eDEao=E¼eDaoE=E and magnetic fields, the initial distribution, and the particle Thecrossdiffusiontermsarethusexpressedasderivativeine distribution on the nightside boundary, which is set at 10 R or E (^I ), derivative in a (^I ) plus mix derivative in e and a (^I ). To the last closed field line. The effect of radial diffusion is 1 o 2 o 3 advancefintime,atimestepisdividedintotwosub-stepsas incorporatedviathesetime-varyingelectricandmagneticfields. TheNASAtrappedradiationmodel(AE8MAX)(Vette,1991;Fung, Dth i fnþ1=2¼fnþ ^I fnþ1=2þ^I fnþ^I fn ð6aÞ 1996) is used for the initial condition in the entire RBE spatial 2 1 2 3 domain.Thedistributionatthenightsideboundaryisassumedto Dth i b(Eea)kmaopdpealefudnbcytiolinnewairthredlaetnisointys w(Niptsh)athneduchpsatrraecatmerisstoilcarenweringdy fnþ1¼fnþ1=2þ 2 ^I1fnþ1=2þ^I2fnþ1þ^I3fnþ1=2 ð6bÞ ps conditions(Zhengetal.,2003) where p N ðtÞ¼½0:02N ðt(cid:3)2hÞþ0:316(cid:5) ffiaffiffimffiffiffiffiuffiffiffi fn¼fðtÞatt¼nDt ps sw E ðtÞ¼0:016V ðt(cid:3)2hÞ(cid:3)2:4 ð4Þ ps sw Inthefirstsub-step,^I issolvedimplicitlyand^I explicitly.In 1 2 whereNpsisincm(cid:3)3,Nswisthesolarwinddensityinthesameunit, turn,inthesecondsub-step,^I2issolvedimplicitand^I1explicitly.^I3 amuistheatomicmassunitoftheelectron,E isinkeV,andV is isalwayssolvedexplicitly.Thefinitedifferencerepresentationof ps sw thesolarwindvelocityinkm/s.Notethatweassumea2htimelag (6)isgivenintheAppendix. betweentheplasmasheetconditionandsolarwindconditionat Havingpreviouslysimulatedtheenergeticelectronfluxesduring thedaysidemagnetopause(Borovskyetal.,1998). the23–27October2002event(Foketal.,2008),werevisitthisevent withcrossdiffusiontermsincludedinthegoverningequation.Fig.2 showstheL-timediagramsofequatorialelectronfluxesinenergy 3. CrossdiffusionintheRBEmodel ranges of 20–70keV (left panels) and 0.6–1.8MeV (right panels); radialtransportduetotime-varyingmagneticandelectricfieldsare We have previously simulatedthe evolution of radiation belt includedinallthreerows.ThetoppanelsofFig.2displayresultsin electronsduringthe23–27October2002geomagneticstormusing which wave diffusion is not included in the calculations. The Dst theRBEmodel(Foketal.,2008).Themagneticfieldisspecifiedby index(blackcurve)isoverlaidontheplots.Theringcurrentelectrons theTsyganenko2004 (T04)model(Tsyganenko etal., 2003)and (Fig.2a)andMeVelectrons(Fig.2b)behaveverydifferentlyinthe Pleasecitethisarticleas:Fok,M.-C.,etal.,Recentdevelopmentsintheradiationbeltenvironmentmodel.JournalofAtmosphericand Solar-TerrestrialPhysics(2010),doi:10.1016/j.jastp.2010.09.033 4 M.-C.Foketal./JournalofAtmosphericandSolar-TerrestrialPhysics](]]]])]]]–]]] Fig.2. Simulatedelectronfluxeson23–27October2002.Leftpanels:20–70keV.Rightpanels:0.6–18MeV.Toppanelsarefluxeswithoutwave-particleinteractions.Middle panelsarefluxeswithenergyandpitch-anglediffusion.Bottompanelsarefluxeswithcrossdiffusionincluded.TheblackcurvesinthetoppanelsareDst. storm.Duringthemainphase,ringcurrentelectronsfromhigherL Foketal.(2008)foundthatthefluxincreaseisaresultofelectron shellsdriftearthwardandfilltheentireouterbelt.Thefluxesremain injectionandearthwardtransportduringthecourseofthestorm. highbecausenowaveassociatedlossmechanismisincludedinthis Next we examine the effects of wave-particle interactions on calculation. For MeV electrons (Fig. 2b), magnetic field effects theringcurrentandradiationbeltelectrons.Themiddlepanelsof dominate over convection. Noticeable flux dropout is seen in the Fig. 2show theRBEelectron fluxeswithpureenergy and pitch- heartoftheouterbeltduringthemainphasewhenringcurrentis angle diffusion from interacting with whistler mode chorus. intensified.ThisisthewellknownDsteffect(DesslerandKarplus, Calculationresultswithcrossdiffusionareplottedinthebottom 1961;KimandChan,1997).Themagneticfieldproducedbythering panels.Atthebeginningofthestorm,waveactivityisweak.There currentinflatesthemainfield.Thedriftshellsofenergeticparticlesin is no obvious difference between runs with and without chorus theradiationbeltexpandoutwardcorrespondingly(conservationof waves.Duringthemainandearlyrecoveryphases,waveactivityis the third adiabatic invariant) and particles decelerate. This de- strong.Forringcurrentelectrons(leftpanels),theeffectsofpitch- energization causes an adiabatic decrease in particle fluxes since angle diffusion are stronger than those of energy diffusion. theenergyspectrumslopeisnegativeintheradiationbeltenergy Asignificantamountofelectronsarediffusedintothelosscone. range.Theexpansionofdriftshellsalsoproducespermanentlossat A flux hole is formed around L¼4 during the storm recovery. In high L’s when particles encounter the magnetopause (Ukhorskiy contrast, with the consideration of chorus waves, MeV electron et al., 2006). During the recovery phase, MeV electron fluxes fluxesgraduallyincreaseduringtherecoveryphase(rightpanels, recoveraswell.Theintensitiesarehigherthanthepre-stormlevel. Fig. 2). The injection of lower-energy electrons forms a seed Pleasecitethisarticleas:Fok,M.-C.,etal.,Recentdevelopmentsintheradiationbeltenvironmentmodel.JournalofAtmosphericand Solar-TerrestrialPhysics(2010),doi:10.1016/j.jastp.2010.09.033 M.-C.Foketal./JournalofAtmosphericandSolar-TerrestrialPhysics](]]]])]]]–]]] 5 population for energy diffusion. Particles are accelerated by the Cross diffusion tends to moderate the impacts from pure pitch- choruswavesandMeVelectronsslowlydiffusetolargerLshellsat angleandenergydiffusion.Forringcurrentelectrons,withcross laterecovery. diffusionincluded(Fig.2e),pitch-anglediffusionisweakenedand Whencomparingthefluxesinmiddlepanelswiththoseinthe the overall fluxes are higher than those without cross diffusion bottompanelsofFig.2,wefindnoticeableeffectsofcrossdiffusion. (Fig. 2c). Similarly in the case of MeV electrons, cross diffusion reduces the energy gain by energy diffusion and thus the flux enhancementintherecoveryphase.Fig.3illustratesquantitatively theeffectofcrossdiffusioninradiationbeltelectrons.Theratioof MeVelectronfluxwithoutandwithcrossdiffusionisplottedasa functionofLshellattheendof4-dayssimulation.Inmostpartsof theinnermagnetosphere,theratioiscloseto1.However,inthe heartoftheouterbeltaroundL¼4,ignoringcrossdiffusioncould cause overestimation of electron flux as much as a factor of 5. Detailedanalysisoftheeffectsofcrossdiffusionwillbereportedin aseparatestudy. 4. RBEsimulationofaMHDsubstorm TheSunwasinitsdeepminimuminyears2008and2009;there wasminimalsolarandgeomagneticactivity.However,recurring highspeedstreamscouldtriggersubstormsintheEarth’smagneto- Fig.3. FluxratioasafunctionoftimeofMeVelectronswithoutandwithcross diffusion.Ratiosarecalculatedatsimulationtimeof4days. sphereeveninsolarminimum(Bakeretal.,1998).On3September Fig.4. Dst,AU,ALandsolarwindspeed,density,ByandBzon3–6September2008. Pleasecitethisarticleas:Fok,M.-C.,etal.,Recentdevelopmentsintheradiationbeltenvironmentmodel.JournalofAtmosphericand Solar-TerrestrialPhysics(2010),doi:10.1016/j.jastp.2010.09.033 6 M.-C.Foketal./JournalofAtmosphericandSolar-TerrestrialPhysics](]]]])]]]–]]] 2008, a high speed stream arrived at the magnetosphere and triggered a moderate storm with minimum Dst of (cid:3)51nT on September4,0500UT.Fig.4plotstheDst,AU,ALandsolarwind speed,density,ByandBzon3(cid:3)5September2008. TheAkebonosatelliteobservedenhancementsofradiationbelt electrons during the active period on 3(cid:3)5 September 2008. AkebonowaslaunchedinFebruary1989bytheInstituteofSpace and Astronautical Science in Japan (Takagi et al., 1993). In September 2008, Akebono was in a high inclination, highly ellipticalorbit with apogee at 5260km altitude, perigeealtitude at295km,andorbitperiodof2.5h.TheRadiationMonitor(RDM) measuredelectronfluxesinthreeenergychannels:0.30–0.95MeV, 0.95–2.5MeVand42.5MeV(Takagietal.,1993).Arapidincrease inhigh-energyelectronfluxwithafactorof80at4oLo5isseen between 0321 and 0546UT, around the peak of the storm (minimum Dst). Similar growths are also seen in the other 2 RDM lower-energy channels. The top panel of Fig. 5 shows the Akebono electron flux of energy 42.5MeV from September 3, 00UT to September 4, 12UT. The Dst index during this time is overlaidintheplot.TheAkebonodataareaveragedover3orbit periods.Thetimescaleofthisenhancementisafewhoursandthus itistooshortforwaveassociatedenergization.ThelargeALvalues inthistimeperiod(Fig.4)suggestasubstormmayplayaroleinthis quickincreaseofouterbeltelectrons(Nagaietal.,2006). WeperformRBEsimulationstounderstandthecauseoftheflux enhancement seen in the Akebono electron data. In most of our previousRBEcalculations,weusedempiricalmodelsofmagnetic and electric fields (Fok et al., 2001, 2008; Zheng et al., 2003). Recently,wehaveadaptedthemagneticandelectricfieldsoutput fromthecoupledmodelofBATSRUS-RiceConvectionModel(RCM) into the RBE model in order to self-consistently simulate the responses of the radiation belts to solar wind and ring current variations during storm time (Glocer et al., 2009). The MHD electromagnetic fields are updated every 10s to drive the drift motion and radial transport of radiation belt particles. Fig. 5(b) depictstheRBEelectronfluxescalculatedwithT04magneticfield modelandWeimerelectricfieldmodel(Tsyganenkoetal.,2003; Weimer,2001).Fig.5(c)istheRBEfluxcalculatedintheMHDfields simulatedfromtheBATSRUS-RCMmodel(DeZeeuwetal.,2004). NotethattheRBEfluxesshowninFigs.5(b)and(c)areequatorial fluxesandwithtemporalresolutionof1h.Incontrast,theAkebono measurements are taken along high inclination orbits. However, thetemporalvariabilityofhighlatitudefluxeswasfoundnearly identical with the equatorial fluxes (Kanekal et al., 2001, 2005). Wave-particle interactions are not included in these RBE Fig. 5. Top panel: L-Time plot of Akebono electron flux (42.5MeV) on 3–4 calculations. In the quiet period on September 3, the two RBE September2008.TheblackcurveisDst.Middlepanel:correspondingRBEsimulated simulationsgivesimilarfluxintensity.Duringthemainphaseof fluxwithT04magneticfield.Bottompanel:simulatedfluxwithBATSRUSfields. thestorm,bothRBErunsproducefluxdropoutintheouterbelt,in Fig.6. BATSRUS-RCMsimulationat(a)05:00UTand(b)05:20UTon4September2008.Magneticfieldlines(whitelines)andpressure(color)areplottedonX–Zplane. Pleasecitethisarticleas:Fok,M.-C.,etal.,Recentdevelopmentsintheradiationbeltenvironmentmodel.JournalofAtmosphericand Solar-TerrestrialPhysics(2010),doi:10.1016/j.jastp.2010.09.033 M.-C.Foketal./JournalofAtmosphericandSolar-TerrestrialPhysics](]]]])]]]–]]] 7 responsetotheringcurrentintensificationsimulatedintheT04 etal.,2003)havebeenusedtosimulatethetemporalvariationsof andBATSRUS-RCMmodels.However,at05–06UTonSeptember4, magnetic field in the RBE model. We found strong electron asuddenincreaseinelectronfluxisseenat4oLo5intheRBE- energization by the inductive electric field associated with the BATSRUScalculation,consistentwiththeAkebonodata.Thereisno time-varyingmagneticfield(Zhengetal.,2003;Foketal.,2008). significantenhancementintheRBE-T04runduringtherecovery However,asshowninSection4,wecannotreproducetherapidflux phaseofthestorm. enhancement during a substorm dipolarization with the T04 Since wave-particle interactions are not considered in these model. In contrast, the RBE model driven by MHD fields particularRBEcalculations,theenhancementseeninFig.5(c)must successfully produces the observed increase in electron flux bearesultofparticletransport.Whenweexaminethemagnetic duringasubstorm.AnotherlimitationofthecombinedRBE-T04- configuration during the enhancement, we find the MHD model Weimer models is that they cannot fully simulate the effect of predictsasubstormdipolarizationat(cid:2)05UTonSeptember4.Fig.6 radialdiffusionevenwithT04andWeimermodelinputparameters showstheBATSRUSfieldlinesinwhiteandpressureincoloronthe updated in time. Both the Tsyganenko and Weimer models are X–Z plane before (left) and after (right) the substorm onset on empiricalandnotconsistentwitheachother.Thisproblemcanbe September4.At05:00UT,thefieldlinesonthenightsidearegreatly resolvedby,again,applyingMHDfieldsintheRBEmodel.Recently stretched. 20min later, the dipolarization takes place in the tail. workbyHuangetal.(2010)hasshownthattheULFwaves(mHz Field lines are convecting earthward and have more dipole-like range) predicted by theLyon–Fedder–Mobarry MHDmodel well shape. Electrons which are gyrating along these collapsing field representtheULFwavedataobservedbytheGOESsatellites. linescanbeacceleratedsignificantlyonatimescaleofminutes(Fok In summary, we have reported recent developments and etal.,2001;Gloceretal.,2009),muchfasterthanthetimescalefor improvementsinourradiationbeltmodel.Wehaveimplemented energizationbywhistlermodechoruswaves,whichistypicallyof pitch-angle-energycrossdiffusioninourwavediffusioncalcula- theorderof1–2days(SummersandMa,2000;Horneetal.,2005). tion.Wehavesimulatedasubstormdipolarizationeventwiththe TheT04model,whichisdrivenbyDstandsolarwindparameters, RBE model embedded in MHD magnetic and electric fields. The does not contain clear substorm signatures. Empirical magnetic findingsfromthismodeldevelopmentworkinclude field models of this kind cannot directly simulate substorm reconfiguration unless special tricks are applied (Delcourt et al., (1) Crossdiffusionmoderatestheeffectsofpurepitch-angleand 1990,1997;Pulkkinenetal.,1991;Foketal.,2001).Formoderate pure energy diffusion. Exclusion of cross diffusion would stormssuchasthisoneon3–5September2008,convectionisweak significantlyoverestimatethefluxenhancementsofrelativistic andthedominant energization and transportmechanism issub- electronsduringstormrecovery.Inoursimulationofthestorm stormreconfigurationandtheresultingdipolarizationelectricfield. on 23–27 October 2002, at the heart of the outer belt, the The rapid enhancements of radiation belt fluxes during modest overestimationcanbeashighasafactorof5. stormscannotbeexplainedwithouttheconsiderationofsubstorm (2) The strong inductive field during substorm dipolarization effects. produces rapid increase in energetic electron flux on a time scale of an hour, much shorter than that from wave acceleration. 5. Discussionandconclusions Onemustbecautioustointerpretthetimingsignatureseenin theAkebonodata.Thetemporalresolutionislimitedbytheorbit Acknowledgment periods (2.5h). In our separate study of the storm in September 2008, we will identify storm and substorm signatures using continuous high resolution data, such as measurements from This research was supported by NASA Science Mission Direc- NOAAandGOESsatellites. torate,HeliophysicsDivision,LivingWithaStarTargetedResearch So far we have considered only low-latitude whistler mode and Technology Program, under Work Breakdown Structures: choruswaves.However,studyhasshownthatchoruswavesathigh 936723.02.01.06.78and936723.02.01.01.27. latitude are important in the loss and acceleration of energetic electrons (Horne and Thorne, 2003). Other wave modes, such as plasmaspherichissandelectromagneticioncyclotronwaves,also Appendix:FinitedifferencerepresentationoftheADIscheme playcrucialrolesinthedevelopmentanddecayoftheradiation belts(Meredithetal.,2007;Lorentzenetal.,2000;Summersand Eq. (6)outlinestheADI schemeinsolvingthecross diffusion Thorne, 2003). All these wave modes have different sources of equation.Thesecondorderfinitedifferencediscretizationof(6)can excitation and are found in different regions of the inner bewrittenas magnetosphere. We plan to gradually include all the important m1 fnþ1=2þfnþ1=2(cid:3)m1 fnþ1=2 wavemodesintheRBEmodel.Inthatcasewewillbeinabetter k,m k(cid:3)1,m k,m k,mkþ1,m (cid:7) (cid:8) position to understand and identify the physical processes that ¼fn þm2 fn (cid:3)fn k,m k,m k,mþ1 k,m(cid:3)1 controltheobservedvariabilityintheradiationbelts. (cid:7) (cid:8) þm3 fn þfn (cid:3)fn (cid:3)fn ð7aÞ Inclusion of the cross diffusion term does make a noticeable k,m kþ1,mþ1 k(cid:3)1,m(cid:3)1 k(cid:3)1,mþ1 kþ1,m(cid:3)1 differenceinelectronfluxintheheartoftheouterbelt.However, the effect is relatively mild and localized when compared with otherprocessessuchasparticleinjection,transportandaccelera- m2 fnþ1 þfnþ1(cid:3)m2 fnþ1 k,m k,m(cid:3)1 k,m k,mk,mþ1 tion.Itisdifficulttoshowquantitativelythatwithcrossdiffusion ¼fnþ1=2þm1 (cid:7)fnþ1=2(cid:3)fnþ1=2(cid:8) willimprovethedatamodelcomparison.Nevertheless,inclusionof k,m k,m kþ1,m k(cid:3)1,m (cid:7) (cid:8) crossdiffusionwillgiveabetterestimationofthediffusiveeffect þm3 fnþ1=2 þfnþ1=2 (cid:3)fnþ1=2 (cid:3)fnþ1=2 ð7bÞ k,m kþ1,mþ1 k(cid:3)1,m(cid:3)1 k(cid:3)1,mþ1 kþ1,m(cid:3)1 frominteractingwithaparticularwavemode. where Thedynamicsofradiationbeltelectronsisstronglycontrolled bythemagneticconfigurationanditsfluctuations.Theempirical m1 ¼ Dt Gk,mþ1D~k,mþ1(cid:3)Gk,m(cid:3)1D~k,m(cid:3)1 modelsofTsygenenko(TsyganenkoandStern,1996;Tsyganenko k,m 2 Gk,mðaomþ1(cid:3)aom(cid:3)1Þðekþ1(cid:3)ek(cid:3)1Þ Pleasecitethisarticleas:Fok,M.-C.,etal.,Recentdevelopmentsintheradiationbeltenvironmentmodel.JournalofAtmosphericand Solar-TerrestrialPhysics(2010),doi:10.1016/j.jastp.2010.09.033 8 M.-C.Foketal./JournalofAtmosphericandSolar-TerrestrialPhysics](]]]])]]]–]]] Dt G D~ (cid:3)G D~ Horne,R.B.,Thorne,R.M.,1998.Potentialwavesforrelativisticelectronscattering m2k,m¼ 2 G kþða1,m kþ(cid:3)1a,m kÞ(cid:3)ðe1,m (cid:3)k(cid:3)e1,mÞ and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 25, k,m omþ1 om(cid:3)1 kþ1 k(cid:3)1 3011. m3 ¼ DtD~k,m Horne,R.B.,Thorne,R.M.,2003.Relativisticelectronaccelerationandprecipitation k,m ða (cid:3)a Þðe (cid:3)e Þ duringresonantinteractionswithwhistler-modechorus.Geophys.Res.Lett. omþ1 om(cid:3)1 kþ1 k(cid:3)1 30(10),1527.doi:10.1029/2003GL016973. kiseindexandmisa index. Horne,R.B.,Thorne,R.M.,Glauert,S.A.,Albert,J.M.,Meredith,N.P.,Anderson,R.R., 0 2005.Timescaleforradiationbeltelectronaccelerationbywhistlermodechorus Eq. (7) represents two tri-diagonal systems similar to the waves.J.Geophys.Res.110,A03225.doi:10.1029/2004JA010811. Crank–Nicolson method. There are well established numerical Horne,R.B.,Meredith,N.P.,Glauert,S.A.,Varotsou,A.,Boscher,D.,Thorne,R.M., techniques and stability analysis for this type of problem Shprits,Y.Y.,Anderson,R.R.,2006.Mechanismsfortheaccelerationofradiation (LeVeque,2002;BurdenandFaires,2004). beltelectrons.In:Tsurutani,B.T. (Ed.),RecurrentMagneticStorms:Corotating SolarWindStreams,GeophysicsMonographSeries,vol.167.AGU,Washington, D.C,pp.151–173. Horne,R.B.,Thorne,R.M.,Glauert,S.A.,Meredith,N.P.,Pokhotelov,D.,Santolik,O., References 2007.ElectronaccelerationintheVanAllenradiationbeltsbyfastmagnetosonic waves.Geophys.Res.Lett.34,L17107.doi:10.1029/2007GL030267. Albert,J.M.,1994.Quasi-linearpitchanglediffusioncoefficients:retaininghigh Huang,C.-L.,Spence,H.E.,Singer,H.J.,Hughes,W.J.,2010.Modelingradiationradial harmonics.J.Geophys.Res.99,23,741–23,745. diffusioninULFwavefields:1.QuantifyingULFwavepoweratgeosynchronous Albert, J.M., Young, S.L., 2005. Multidimensional quasi-linear diffusion of radiation orbit in observations and in global MHD model. J. Geophys. Res. 115, belt electrons 32, L14110. doi:10.1029/2005GL023191Geophys. Res. Lett. 32, A06215.doi:10.1029/2009JA014917. L14110.doi:10.1029/2005GL023191. Iles,R.H.A.,Fazakerley,A.N.,Johnstone,A.D.,Meredith,N.P.,Buhler,P.,2002.The Albert,J.M.,Brautigam,D.H.,Hilmer,R.V.,Ginet,G.P.,2001.Dynamicradiationbelt relativisticelectronresponseintheouterradiationbeltduringmagneticstorms. modelingattheAirForceResearchLaboratory.In:Song (Ed.),SpaceWeather, Ann.Geophys.20,957–965. GeophysicsMonographSeries,vol.125. AGU,WashingtonD.C,pp.281–287. Kanekal,S.G.,Baker,D.N.,Blake,J.B.,2001.Multisatellitemeasurementsofrelati- Albert,J.M.,Meredith,N.P.,Horne,R.B.,2009.Three-dimensionaldiffusionsimula- visticelectron:globalcoherence.J.Geophys.Res.106,29,721–29,732. tionofouterradiationbeltelectronsduringthe9October1990magneticstorm. Kanekal, S.G., Friedel, R., Reeves, G.D., Baker, D.N., Blake, J.B., 2005. Relativistic J.Geophys.Res.114,A09214.doi:10.1029/2009JA014336. electroneventsin2002:Studiesofpitchangleisotropization.J.Geophys.Res. Baker,D.N.,2001.Satelliteanomaliesduetospacestorms.In:Daglis,I.A.(Ed.),Space 110,A12224.doi:10.1029/2004JA010974. StormsandSpaceWeatherHazards.KluwerAcademicPublishers,Netherlands, Kim,H.-J., Chan,A.A.,1997.Fullyrelativistic changesin stormtimerelativistic pp.285–311. electronfluxes.J.Geophys.Res.102,22107–22116. Baker,D.N.,Pulkkinen,T.I.,Li,X.,Kanekal,S.G.,Blake,J.B.,Selesnick,R.S.,Henderson, LeVeque,R.J.,2002.Finitevolumemethodsforhyperbolicproblems.Cambridge M.G.,Reeves,G.D.,Spence,H.E.,Rostoker,G.,1998.Coronalmassejections, UniversityPress,NewYork. magnetic clouds, and relativistic magnetospheric electron events: ISTP. Li,X.,Temerin,M.,Baker,D.N.,Reeves,G.D.,Larson,D.,2001.Quantitativeprediction J.Geophys.Res.103(A8),17,279–17,291. ofradiationbeltelectronsatgeostationaryorbitbasedonsolarwindmeasure- Borovsky,J.E.,Thomsen,M.F.,Elphic,R.C.,1998.Thedrivingoftheplasmasheetby ments.Geophys.Res.Lett.28,1887–1890. thesolarwind.J.Geophys.Res.103,17,617–17,639. Lorentzen,K.R.,McCarthy,M.P.,Parks,G.K.,Foat,J.E.,Millan,R.M.,Smith,D.M., Bourdarie,S.,Boscher,D.,Beutier,T.,Sauvaud,J.-A.,Blanc,M.,1997.Electronand Lin,R.P.,Treilhou,J.P.,2000.Precipitationofrelativisticelectronsbyinteraction proton radiation belt dynamic simulations during storm periods: a new withelectromagneticioncyclotronwaves.J.Geophys.Res.105,5381–5389. asymmetricconvection-diffusionmodel.J.Geophys.Res.102,17,541–17,552. Lyons, L.R., 1973. Comments on pitch angle diffusion in the radiation belts. Burden,R.L.,Faires,J.D.,2004.NumericalAnalysis8thed.BrooksCole,PacificGrove,CA. J.Geophys.Res.78,6793–6797. Degeling,A.W.,Ozeke,L.G.,Rankin,R.,Mann,I.R.,Kabin,K.,2008.Driftresonant Lyons,L.R.,Thorne,R.M.,Kennel,C.F.,1972.Pitch-anglediffusionofradiationbelt generation of peaked relativistic electron distributions by Pc 5 ULF waves. electronswiththeplasmasphere.J.Geophys.Res.77,3455–3474. J.Geophys.Res.113,A02208.doi:10.1029/2007JA012411. Meredith,P.N.,Horne,R.B.,Anderson,R.R.,2001.Substormdependenceofchorus Delcourt,D.C.,Sauvaud,J.A.,Pedersen,A.,1990.Dynamicsofsingleparticleorbits amplitudes:implicationsfortheaccelerationofelectronstorelativisticenergy. duringsubstormexpansionphase.J.Geophys.Res.95,20,853–20,865. J.Geophys.Res.106,13,165–13,178. Delcourt,D.C.,Sauvaud,J.-A.,Moore,T.E.,1997.Phasebunchingduringsubstorm Meredith,P.N.,Horne,R.B.,Thorne,R.M.,Anderson,R.R.,2003.Favoredregionsfor dipolarization.J.Geophys.Res.102,24,313–24,324. chorus-drivenelectronaccelerationtorelativisticenergiesintheEarth’souter Dessler,A.J.,Karplus,R.,1961.SomeeffectsofdiamagneticringcurrentsonVan radiationbelt.Geophys.Res.Lett.30(16),1871. Allenradiation.J.Geophys.Res.66,2289–2295. Meredith,N.P.,Horne,R.B.,Glauert,S.A.,Anderson,R.R.,2007.Slotregionelectron DeZeeuw,D.L.,Sazykin,S.,Wolf,R.A.,Gombosi,T.I.,Ridley,A.J.,Toth,G.,2004. losstimescalesduetoplasmaspherichissandlightninggeneratedwhistlers. CouplingofaglobalMHDcodeandaninnermagnetosphericmodel:initial J.Geophys.Res.112,A08214.doi:10.1029/2007JA012413. results.J.Geophys.Res.109,A12219.doi:10.1029/2003JA010366. Miyoshi,Y.S.,Jordanova,V.K.,Morioka,A.,Thomsen,M.F.,Reeves,G.D.,Evans,D.S., Fok,M.-C.,Moore,T.E.,1997.Ringcurrentmodelinginarealisticmagneticfield Green,J.C.,2006.Observationsandmodelingofenergeticelectrondynamics configuration.Geophys.Res.Lett.24,1775–1778. during the October 2001 storm. J. Geophys. Res. 111, A11S02. doi: Fok,M.-C.,Kozyra,J.U.,Nagy,A.F.,Rasmussen,C.E.,Khazanov,G.V.,1993.Decayof 10.1029/2005JA011351. equatorial ring current ions and associated aeronomical consequences. Nagai,T.,Yukimatu,A.S.,Matsuoka,A.,Asai,K.T.,Green,J.C.,Onsager,T.G.,Singer,H.J., J.Geophys.Res.98,19381–19393. 2006. Timescales of relativistic electron enhancements in the slot region. Fok,M.-C.,Moore,T.E.,Greenspan,M.E.,1996.Ringcurrentdevelopmentduring J.Geophys.Res.111,A11205.doi:10.1029/2006JA011837. stormmainphase.J.Geophys.Res.101,15,311–15,322. Ober, D.M., Horwitz, J.L., Gallagher, D.L., 1997. Formation of density troughs Fok,M.-C.,Moore,T.E.,Spjeldvik,W.N.,2001.Rapidenhancementofradiationbelt embeddedintheouterplasmaspherebysubauroraliondriftevents.J.Geophys. electron fluxes due to substorm dipolarization of the geomagnetic field. Res.102,14,595–14,602. J.Geophys.Res.106,3873–3881. Omura,Y.,Summers,D.,2006.Dynamicsofhighenergyelectronsinteractingwith Fok,M.-C.,Ebihara,Y.,Moore,T.E.,Ober,D.M.,Keller,K.A.,2005.Geospacestorm whistlermodechorusemissionsinthemagnetosphere.J.Geophys.Res.111, processescouplingtheringcurrent,radiationbeltandplasmasphere.In:Burch, A09222.doi:10.1029/2006JA011600. J. (Ed.),InnerMagnetosphereInteractions:NewPerspectivesfromImaging, Paulikas, G.A., Blake, J.B., 1979. Effects of the solar wind on magnetospheric Geophys.MonographSeries,vol.159. AGU,Washington,D.C,pp.207–220. dynamics:energeticelectronsatthesynchronousorbit.In:Olsen,W.-P.(Ed.), Fok, M.-C., Horne, R.B., Meredith, N.P., Glauert, S.A., 2008. The radiation belt QuantitativeModelingofMagnetosphericProcesses,vol.21.AGU,Washington, environment model: application to space weather nowcasting. J. Geophys. D.C,pp.180–202. Res.113,A03S08.doi:10.1029/2007JA012558. Pulkkinen,T.I.,Baker,D.N.,Fairfield,D.H.,Pellinen,R.J.,Murphree,J.S.,Elphinstone,R.D., Fung, S.F., 1996. Recent development in the NASA trapped radiation model. In: McPherron,R.L.,Fennell,J.F.,Lopez,R.E.,Nagai,T.,1991.Modelingthegrowth Lemaire, J.F., Heynderickx,D., Baker,D.N. (Eds.),RadiationBelts: Models and phase of a substorm using the Tsyganenko model and multi-spacecraft Standards,Geophys.MonographSeries,vol.97.AGU,Washington,D.C,pp.79–91. observations:CDAW-9.Geophys.Res.Lett.18,1963–1966. Glauert,S.A.,Horne,R.B.,2005.Calculationofpitchangleandenergydiffusion Reeves, G.D., McAdams, K.L., Friedel, R.H.W., 2003. Acceleration and loss of coefficientswiththePADIEcode.J.Geophys.Res.110,A04206.doi:10.1029/ relativisticelectronsduringgeomagneticstorms.Geophys.Res.Lett.30,1529. 2004JA010851. Schulz,M.,Lanzerotti,L.J.,1974.Physicsandchemistryinspace.ParticleDiffusionin Glocer,A.,Toth,G.,Fok,M.,Gombosi,T.,Liemohn,M.,2009.Integrationofthe theRadiationBelts,vol.7.Springer,NewYork. radiationbeltenvironmentmodelintothespaceweathermodelingframework. Shprits,Y.Y.,Chen,L.,Thorne,R.M.,2009.Simulationsofpitchanglescatteringof J.Atmos.Sol.Terr.Phys..doi:10.1016/j.jastp.2009.01.003. relativisticelectronswithMLT-dependentdiffusioncoefficients.J.Geophys.Res. Green,J.C.,Onsager,T.G.,O’Brien,T.P.,Baker,D.N.,2004.Testinglossmechanisms 114,A03219.doi:10.1029/2008JA013695. capable of rapidly depleting relativistic electron flux in the Earth’s outer Summers,D.,Ma,C.-Y.,2000.Amodelforgeneratingrelativisticelectronsinthe radiationbelt.J.Geophys.Res.109,A12211.doi:10.1029/2004JA010579. Earth’sinnermagnetospherebasedongyroresonantwave-particleinteractions. Horne,R.B.,2002.Thecontributionofwaveparticleinteractionstoelectronloss J.Geophys.Res.105,2625–2639. andaccelerationintheEarth’sradiationbeltsduringgeomagneticstorms.In: Summers,D.,Thorne,R.M.,2003.Relativistic electronpitch-anglescatteringby Stone,W.R.(Ed.),ReviewofRadioScience1999–2002.JohnWiley,BognorRegis, electromagneticioncyclotronwavesduringgeomagneticstorms.J.Geophys. pp.801–828Chapter33. Res.108(A4),1143. Pleasecitethisarticleas:Fok,M.-C.,etal.,Recentdevelopmentsintheradiationbeltenvironmentmodel.JournalofAtmosphericand Solar-TerrestrialPhysics(2010),doi:10.1016/j.jastp.2010.09.033 M.-C.Foketal./JournalofAtmosphericandSolar-TerrestrialPhysics](]]]])]]]–]]] 9 Summers, D., Thorne, R.M., Xiao, F., 1998. Relativistic theory of wave-particle Tsyganenko,N.A.,Singer,H.J.,Kasper,J.C.,2003.Storm-timedistortionoftheinner resonantdiffusionwithapplicationtoelectronaccelerationinthemagneto- magnetosphere: How severe can it get? J. Geophys. Res. 108 (A5) sphere.J.Geophys.Res.103,20,487–20,500. 1209.doi:10.1029/2002JA009808. Summers,D.,Ma,C.,Mukai,T.,2004.Competitionbetweenaccelerationandloss Ukhorskiy,A.,Sitnov,M.I.,2008.Radialtransportintheouterradiationbeltdueto mechanismsofrelativisticelectronsduringgeomagneticstorms.J.Geophys. globalmagnetosphericcompressions.J.Atmos.Sol.Terr.Phys.70,1714–1726. Res.109,A04221.doi:10.1029/2004JA010437. Ukhorskiy,A.Y.,Anderson,B.J.,Brandt,P.C.,Tsyganenko,N.A.,2006.Stormtime Summers,D.,Ni,B.,Meredith,N.P.,2007.Timescalesforradiationbeltelectron evolutionoftheouterradiationbelt:transportandlosses.J.Geophys.Res.111, accelerationandlossduetoresonantwaveparticleinteractions:2.Evaluation A11S03.doi:10.1029/2006JA011690. for VLF chorus, ELF hiss and EMIC waves. J. Geophys. Res. 112, Varotsou,A.,Boscher,D.,Bourdarie,S.,Horne,R.B.,Glauert,S.A.,Meredith,N.P.,2005. A04207.doi:10.1029/2006JA011993. Simulation of the outer radiation belt electrons near geosynchronous orbit Takagi,S.,Nakamura,T.,Kohno,T.,Shiono,N.,Makino,F.,1993.Observationof includingbothradialdiffusionandresonantinteractionwithwhistlermode space radiation environment with EXOS-D. IEEE Trans. Nucl. Sci. 40, choruswaves.Geophys.Res.Lett.32,L19106.doi:10.1029/2005GL023282. 1491–1497. Vette,J.I.,TheAE-8trappedelectronmodelenvironment,NSSDC/WDC-A-R&S91- Tao,X.,Chan,A.A.,Albert,J.M.,Miller,J.A.,2008.Stochasticmodelingofmulti- 24. In: Proceedings of the NASA Goddard space flight center, Greenbelt, dimensional diffusion in the radiation belts. J. Geophys. Res. 113, Maryland,November,1991. A07212.doi:10.1029/2007JA012985. Weimer,D.R.,2001.Animprovedmodelofionosphericelectricpotentialsincluding Thorne,R.M.,Horne,R.B.,Glauert,S.A.,Meredith,N.P.,Shprits,Y.Y.,Summers,D., substormperturbationsandapplicationstotheGeospaceEnvironmentModel- Anderson,R.R.,2005.Theinfluenceofwave-particleinteractionsonrelativistic ingNovember24,1996,event.J.Geophys.Res.106,407–416. electrons during storms. In: Burch, J., Schulz, M., Spence, H. (Eds.), Inner Xiao,F.,Su,Z.,Zheng,H.,Wang,S.,2009.Modelingofouterradiationbeltelectrons Magnetosphere Interactions: New Perspectives From Imaging, Geophysics bymultidimensionaldiffusionprocess.J.Geophys.Res.114,A03201.doi:10. MonographSeries,vol.159. AGU,WashingtonD.C. 1029/2008JA013580. Tsyganenko,N.A.,Stern,D.P.,1996.Modelingtheglobalmagneticfieldofthelarge- Zheng,Y.,Fok,M.-C.,Khazanov,G.V.,2003.Aradiationbelt–ringcurrentforecasting scaleBirkelandcurrentsystems.J.Geophys.Res.101,27,187–27,198. model.SpaceWeather1(3),1013. Pleasecitethisarticleas:Fok,M.-C.,etal.,Recentdevelopmentsintheradiationbeltenvironmentmodel.JournalofAtmosphericand Solar-TerrestrialPhysics(2010),doi:10.1016/j.jastp.2010.09.033

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.