ebook img

NASA Technical Reports Server (NTRS) 20070008202: Porous Media Approach for Modeling Closed Cell Foam PDF

1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20070008202: Porous Media Approach for Modeling Closed Cell Foam

Porous Media Approach for Modeling Closed Cell Foam Louis J. Ghosn Ohio Aerospace Institute Brook Park, Ohio Roy M. Sullivan NASA Glenn Research Center Cleveland, Ohio Proposed Abstract for the 43rd Annual Technical Meeting Society of Engineering Science August 13-16th, 2006 In order to minimize boil off of the liquid oxygen and liquid hydrogen and to prevent the formation of ice on its exterior surface, the Space Shuttle External Tank (ET) is insulated using various low-density, closed-cell polymeric foams. Improved analysis methods for these foam materials are needed to predict the foam structural response and to help identify the foam fracture behavior in order to help minimize foam shedding occurrences. This presentation describes a continuum based approach to modeling the foam thermo-mechanical behavior that accounts for the cellular nature of the material and explicitly addresses the effect of the internal cell gas pressure. A porous media approach is implemented in a finite element frame work to model the mechanical behavior of the closed cell foam. The ABAQUS general purpose finite element program is used to simulate the continuum behavior of the foam. The soil mechanics element is implemented to account for the cell internal pressure and its effect on the stress and strain fields. The pressure variation inside the closed cells is calculated using the ideal gas laws. The soil mechanics element is compatible with an orthotropic materials model to capture the different behavior between the rise and in-plane directions of the foam. The porous media approach is applied to model the foam thermal strain and calculate the foam effective coefficient of thermal expansion. The calculated foam coefficients of thermal expansion were able to simulate the measured thermal strain during heat up from cryogenic temperature to room temperature in vacuum. The porous media approach was applied to an insulated substrate with one inch foam and compared to a simple elastic solution without pore pressure. The porous media approach is also applied to model the foam mechanical behavior during subscale laboratory experiments. In this test, a foam layer sprayed on a metal substrate is subjected to a temperature variation while the metal substrate is stretched to simulate the structural response of the tank during operation. The thermal expansion mismatch between the foam and the metal substrate and the thermal gradient in the foam layer causes high tensile stresses near the metal/foam interface that can lead to delamination. 1 v o g . a s a n . w w w m h a c o a F r o r e e t r e e n p ell n r itut an gin Ce p C s he st v n h o n E c A h rc I li r d G ea ce ul ch ea dia for ose s J. r Res ospa and M. S esear n Res e i o r R n M Cl ou ni Ae y al le e o G L o i g S hi R er A s t n O a S u M A i N o l r e n o d o ati P o r nist M mi ngce Ad etien ce MeSci06 nd Spa hnical eering 6th, 20 s a ecin-1 c Tg3 nauti ual f Enust 1 o nog nal Aer 3rd Anociety Au o 4S ati N n 2 s o v o e i g s ur ns sa. e a s s a .n a s p w w g e x w pr e d : e g l al p n a m p i n t a a r r e e r e t t h n h n t m e s n s i e e l l h s i o al a u a t l t p n q o wi al er u w o ni w p i F d o as ell dit u ell fille cell ic pr ut-g ns c s ad in a or C oid eric rop er o ake ate ults avi v m t m e e s h d o w r e e % y s y c r b e i l n l • • • s 7 o o A 9 P P o • • • • l C s m a I o F F k O n n o a ati S T str e l ni a mi n n d 5 a r A e pace 26 -pl Ext 265 FI L d S X- n e X C D s an B I uttl B N P c - - - uti h a S ron e e e c A s a al i p n R o S ati N 3 v o g e a. e r s u a r n u at w. s T r w es pe w m pr m l e a na t n o er i F p a nt ge o α−ij edi ll i an t M e h kl C C s e kl s e Cij u ) o l = f p r e ci P σij Po P Tr s − n r c o Pj T ri ni f αi P (= P s a 11n − T σ o a h i ) Δ t T i c a d l Δ e e e R k s m Tk n M e α r o s o- σ22 tiv − so nsi u n m a u t l e o r sti ek g t xp r e n ( n e o h Co kl or li al P T D Cij ns up m e o r of 3- = t c he pace Administration plication Heat Generalized σij astic stiffness ress-Pressure oefficient of t d S p El St C n s a A FI c O uti S kl a P k ron Cij αij Tαk e A al on all ati W N k n a T 4 v y o b g . h a s s a A n . w n w o w s b i 2 0 00 2 4 4 4 2 1 1 1 ) G u3 52 5252 u3 52 52 52 u3 39 39 39 se f. n 0. 0.0. n 0. 0. 0. n 0. 0. 0. Ri Re ( * ) 3 3 33 3 4 4 4 3 9 9 9 2 R 1 4 44 1 1 1 1 1 4 4 4 1 u 1 11 u 1 1 1 u 2 2 2 G + s n 0. 0.0. n 0. 0. 0. n 0. 0. 0. 2 1 e l ( e i = t d r 1 e o 2 8 88 2 8 8 8 2 2 2 2 *3 p M u1 48 4848 u1 52 52 52 u1 36 36 36 G o n 0. 0.0. n 0. 0. 0. n 0. 0. 0. r l P l e ) al C 33 Pa) .89 .89.13 33Pa) .75 .75 .80 33Pa) .96 .26 .99 opic c t E M 9 98 EM 5 5 0 EM 9 9 9 r i 3 31 4 4 2 4 3 1 t i n ( ( ( o n s U a i h ec EA E22 MPa) 0.97 0.974.99 E22MPa) 9.96 9.96 4.53 E22MPa) 1.85 5.03 2.74 ane 1 1 3 2 1 l M F ( ( ( p − m I n OF ro 11 Pa) .97 .9799 11Pa) 96 96 53 11Pa) .85 .03 .74 (i ation S f E (M 10 104. E(M 9. 9. 4. E(M 31 25 12 )12 str 1 ν mini p p p E1 + Ad m C ) 51 964 mC ) 51 96 4 mC ) 53 96 4 (1 e e 2 12 e 2 1 2 e 2 1 2 2 c T ( - - T( - - T( - - a = p S d 12 an 5 G utics X-26 CFI DL a n B N P o h r e A t al wi n o ati N 5 v o g . a s a n . w w w s t n e i c i f f e o ) ) ) f f C f e e e r r r T T T n − − − υ13 υ23 υ32 o T T T nsi TΔαii T(Tα11 T(α22 T(α33 −υ12 E11 −υ21 E22 υ−31 E33 a − − − p + + + 1 1 1 Ex P+αkl υ−13 1 υ−23 2 υ−32 3 p−ext⋅Tref p−ext⋅Tref p−ext⋅Tref mal kl υ12 E1 υ21 E2 υ31 E3 pcell T− pcell T− pcell T− j − − − er Si 1 1 1 − − − Th P )pext )pext )pext ε11 T−ref ε22 T−ref ε33 T−ref = f − − − T T T n n o eij cell cell cell : Tα=11 T=α22 T=α33 o p p p s ati o ( ( ( d str ti = = = el ni a i mi 1 2 3 y d r ] ε1 ε2 ε3 A b I pace ali [= T αkk d S C Pαij n r a o cs g f uti n g na mi n ero u vi A onal Ass Sol ati N 6 v n o g m o a. n i s oa o ut na F et b w. n the s: am kel stri ww eo s i urF S Di on sshe d s i et i s ysi ures: stribut gas prons in Sol Stres l atDi ll ti a ere cebu An temperatur ernal Distri dalmp intre re NoTe odal essu u l NPr a s mn res ch E TherSolutio essure utine US FEMediaSolution e P roa AQUS Fnalysis ore Pr Subro ABAQPorous nalysis A r p B P A o A p P A r o f t r n a o ati h r st C ni mi d A w hn e so c ei pa o Mat S c nd Fl entpli a mp s A utic Elem a a n eo o t er ni F A if al Fo n o ati N 7 3 1 v 6 o m m m m m m 1 g . at at at ac ac ac at at at ac ac ac s 1 asa 1 1 1 v v v 1 1 1 v v v m .n w 1- 2- 3- 1- 2- 3- 1- 2- 3- 1- 2- 3- oa w w - - - - - - - - - - - - f 3 3 3 3 3 3 2 2 2 2 2 2 0 ) e 3 3 3 3 3 3 2 2 2 2 2 2 m 0 t 1 a u r u u n c a a y V c 0 o & 5 is y m l o t P a 1 d n ( a e 0 e s n Ri a h t e m r u u 0 y 24 cu tm -5 C Pol 1 va 1a e, T 4- n @ ur E 2 e i e 00 at ee - n n 1 r hr FI a a - pe f t C pl pl m o - - n N n n e o i i 0 T i s 5 n 1 a - p x e l a n 0 m o rati 20 er st - h ni T mi d m s: ace A cuu 50 oke Sp a 2 St d V - . n E a l s ul f autic P 0 y o n 0 s ero 3 te A 5 0 5 0 5 0 5 0 5 - r u al 1 1 - 1 1 2 2 o n - - - - c o ati )0001x( mm/mm ,niartS lamrehT a N t a D 8 v o E g . a T s a C n . w w t a w n i d e t e m n e M a m i t r - e a e s c d p a u x pl o m s r e di o u P u n e n c ai nt a e a e l h r m p v st e n- g t e - ac I n h al l i t p m s at g di r n r b i e e s s i h i l u R a t e c e o e t r o r u t n o N s d a f s e pl n e r li n- ai p p r p I t e s r a o s l a p e a on i n m d ati d a r n str e pl e a ni M h mi y t E d A - r m T e s t ac u e e t C Sp o s m a nd r Ri m 1- he utics a Po Sy he y t a n t f o i er e r A s e al U V n o ati - - N 9 v o g . a s a n . w w w 5 5 5 5 4 5 5 5 5 44 5 5 5 4 44 E 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 T Τα331/C) 8E- 3E- 2E- 6E- 6E- Τα331/C) 2E- 9E- 3E- 1E- 2E-3E- Τα331/C) 2E- 4E- 0E- 0E- 6E-3E- ( 6 2 3 9 4 ( 7 5 2 2 09 ( 1 1 4 4 16 C . . . . . . . . . .. . . . . .. 3 4 5 9 1 3 4 6 8 11 4 5 6 1 25 5 5 5 4 4 5 5 5 5 54 5 5 5 4 44 I 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 F 22C) E- E- E- E- E- 22C) E- E- E- E- E-E- 22C) E- E- E- E- E-E- O Τα(1/ 90 90 94 65 40 Τα(1/ 92 29 34 80 2603 Τα(1/ 61 67 02 35 9976 . . . . . . . . . .. . . . . .. 5 6 8 1 2 4 6 6 7 92 4 5 7 1 14 S 5 5 5 4 4 5 5 5 5 54 5 5 5 4 44 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 d 11C) E- E- E- E- E- 11C) E- E- E- E- E-E- 11C) E- E- E- E- E-E- e Τα1/ 0 0 4 5 0 Τα1/ 2 9 4 0 63 Τα1/ 1 7 2 5 96 ( 9 9 9 6 4 ( 9 2 3 8 20 ( 6 6 0 3 97 t 5. 6. 8. 1. 2. 4. 6. 6. 7. 9.2. 4. 5. 7. 1. 1.4. a r b i p p p al em C ) 253 196 -73 24 93 em C ) 253 196 -73 24 93149 em C ) 253 196 -73 24 93149 C T( - - T( - - T( - - n o rati 24 st 1 4 ni 4- 3 mi 5 2 0 d 6 1 A 2 FI L- e X- C D c a B N P p S d n a s c uti a n o r e A al n o ati N

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.