ebook img

NASA Technical Reports Server (NTRS) 20010071849: VCSEL Applications and Simulation PDF

9 Pages·0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20010071849: VCSEL Applications and Simulation

:Outline : • Introduction - What isVCSEL? TheVision VCS_ SA_PAPLTIICOANTIONS AND/: • VCSEL Applications Op_caI Intcrconnectlon in Information l"echnoloKv Dr. Samson Cheu_ Yh¢ Reason Dr. Peter Goorjian • VCSEL Simulation Dr. Jianzhong Li FormuJafion Numeric Algorithm Dr. Cun-zheng..=Ning )Lead) Computation Resulta hOp'J/www.n as.na.sa .gov/G roups/Sa Tech/qd m/index .htmt • • • , • • • • VCSEL is a Semiconductor Laser • Any laser consists of two ingredients active matenal cavity • Semiconductor laser based on electronic transitions involving annihilation ofelectrons and holes in asemiconductor, e.g. GaAs Gallium INTRODUCTION Arsenide. • WtlAT IS VCSEL? • The first VCSEI, ismade by Prot'. Iga from Tokyo • TIlE VISION University. • Focused on native oxide confined GaAs and lnGaAs VCSELs, red VCSELs and 1.3 and 1.55 micron wavelength VCSELs. WHAT IS VCSEL? ComparisOn with Edge.Emitting Laser • VCSELs :Vertical-Cavity-Surface-Emitting Lasers _A • Vertical-Cavity means that the • Edge Emitting Diode Laser _l - Light fromlhc edge cavity is vertical to the A+tigtmtie dixerging :ll+te semiconductor u,afer. Elli_icai beam • Surface-Emitting means that the light conies out fi'om the surfiace of the wafer. Light fromll_ stathce ;1_ • Distributed Bragg Reflectors (DBRs) • VCSE_Lnraller divergence ,ingle 2t'*-_Opairsof semiconductor !a_e_s circular i_am cvo$_ .,¢ction :'effectivity().99S /a,.er thickness :)+ldt=,,__d_=,L.4. 2-D VCSEL _ys ° Re_ereh_ Id experimemts have been deme oa VCSEL in rt.¢t_ Iyt_M. • An ant is Iookiulg down at VCSEL array. • One array consists of 400 INTRODL'CTION individual VCSELs. • WHAT IS VCSEL': • By A. Soberer, Harnessing the Atom '_ Light, Scientific • TIlE VISION _.m_r"w.a n. 1998. ! li a li | " The Tera-Em Vision Optoelctronic Integlated Circuit (OEIC) According to a 1999 marketing study generated by Optoelect ronic_is themajor enabling technolo_ for the tera-era ElectroniCast (Palo Alto, CA). there are four primary information technology according tothe NRC report. OEIC application areas: datacom, telecom, military, and http://ww w.nap.ed u/eat alo#5954.h tml specialty. • information Transmission: (Terabit-pee-second The potential OEIC market is projected to be $1.1 backbone, ion8 haul networkst Access r_twork openltxng at hundlt daof_bll_# s¢,2 billion by FY 2003 and over f_ billion by FY 2008. Local area rtetwod_ opemtan_ atrcnsofg_t bits.scc - Gl_abd persecond tothed_sktop Datacom OEICs are expected to be the most cost • Informatio*l Proces_ng: (tern-operations per second effective devices to manufacture because the majority computersl of the components will be serial (single element) Terabd per s_ond throughput switches Mulh_lgahert2 clc-cks devices which operate at 850nm (the ;Z)in multimode [nt_rconne¢ )onsopemtmg at hundreds ofglgablt _",ec fiber networks. • Information Storage: _Terabyte data bankl Mulhterbyt¢ disk dnses tens, of_abyl¢ _111o_ chil_ : Advantages : • Circular beam . :deal for free spctce coupling toother optical elements effectively taunched into optical fibers • I,ow threshold current {< imA) • 2-dimensional array capabilities • Iiigh Bandwidth under modulation VCSEL APPLICATIONS - l_l_ GFIz •OPTICAL INI"ERCONNECTION IN Easily integrated with traditional electronic devices INFORMATION TECHNOLOGY monolithically (like transistor) •TIlE REASON heterogeneously by v,afer Ixmding _echnoh_gy with C,_lOS circutt ,',3form SPA (Smart Pixel Arrayl "• . . • . • • • 2 • MonoJitbl¢ VCSELJpbolodc4ector array • Photodetectors receive the optical •2-dimensional array capabilities _ignal from the VCSEL. •single longitudinal mode optical output • OptiComp Corporation, Nevada •very small size •very low threshold current A _ch_ed CSEM VCSEL array _*th the cap removed. "['helauerl e_ttt verttcaUy fromthe chip _urftce. p h[tp: ',_,',vw.d a',vnO_akc r.co mma,. _.t_nefi ngs_ o_d¢omp.html Optoelectmnics and IT VCSELs applied to Information Technology: • Smalle_l semiconductor lase¢ /i¸i_!/i/iii!:_!_//_ii!i :_ i : : ! • Peta-flop compuling with VCSEL-based optical interconnect • lnterprocesaor communication • _',lulti-gigabit Ethernet "31C] .. ii 0,0,... VCSEL APPLICATIONS .l-U-k ._.JZrl. • OPTICAL INTERCONNECTION 1N INFORMATION TECIINOLOGY Electronic Electronic _ TOrpa_rmm l[e_mUotn Output • TIlE REASON l.put rraz_nUtter recaller David Miller :lnt J.Optoelectronics Vol. II, p.t55 (19973 • * • , • • o 0 Electrical and Optical: Similarities :Electrical and Optical Differences • hlfornmtJou carried via electromagnetic physic,; _lgt_als in '_ires _on't propaga:e at the electren velocity Very short wavelength) ,IC_r_ s) 500 nm | k= c/v • lake electronic logic devices, optical logic devices electronic 3cm-30m ) ttse electrons to effect the necessary switching _,nol tt_ V Vh/e 0 _ o ~3.0e_8 rTVS High oarrier frequency 1 arge photon energy 500 THz [ 2 eV electronic 10MHz-10GHz) lectronic 40neV_OmeV 1- 'T" << 3,0e_.B rr_s r_cMaac_'c._ clanc_ i a | a I - . . • High frequency Bits per second ~ B0 - solves difficulty of_'high aspect ratio" archJ_tums B0- 10i5 for cables rt allows short op_cal pulses usage B0- 1016 for on-chip lines allows muitipte different frequency carriers B0~ 10ns for equalized lines • Short wavelength _ILA (How can we reach l"b/s ?!) alloy, sfrte-space multi-chart:el imaging interconnets allows beamsplitters without _ck retlec_on Architecture . Large photon energy Telecommunication switching -- I r_sot ailow_ voltage isolal3on Servers aito'_,s quantum impedance coave_ Noee: can elceed the limil by codin_ repeating, or multilevel modulation No_ tim_ivo formalinien_ fundamental. Optical lntercormections sho t • No aspect-ratio problem Free-'_pace electri¢_l| interconneclio,'ls are not practical b(_cause Ihewavelength nf signal istoo long --longer than achip. It is • No modulation-frequency-dependent loss hard to focus awave toadimension smaller than its • Loss in optical giber is low (0.2dB/km) wavelength • Dispersion is weaker in optical fiber than cable In optics, bycontrast, common to less than l,10clock period, of,Lispersion fora6GHz image thousands ofoutputs onone bandwidth slgr_al over Ikm ,fffiber surface tothousands of inputs on • Optical fiber can be small ~12.Smicrons in diameter another via "free space"; e.g. using lens. Note: Free spalce ill¢er_llaecllo_ _n beopen SpiCe or mtirely take pl_ce wlt ItJ _olld or rigid g_ _rmcrare Note: stin ulcter reae_cb Voltage Isolation Detection ofphoton allows _s togenerate current and voltage but carries no information (orinterference) from the d.c. level inthe source circuit. The so-¢alled "oplo-isolator" so_ves an important pxoblem in _i:_ _ _ _i!_i_ _ _ii_:!_ _ electrical systems '.ightemitting diode VCSEL FORMULATION pho 4 Semiconductor Bloch Equations _iiii 2 2 _t*=-iakpk-_<._ +n_-I)+_ atI,,,, e_ = '_ k Carrier Particle Energy 2ma 3 --at ------'ynnk -s- Pit at tc-¢ at Ic-p. •Va _---V ,_ nak Total Carrier i)ens_ty 2 Wa =_-_e_n Total Energy 7_ carrier re_ombinat ion rate Ak electronic pumping • Parabolic energy band Att detuninlt t¢,rm nt Coulomb effect • N" = Nh= N c - c carrier -orrie_eattering • ._ is described by Fermi-Dirac distribution c - ph carrier -phonon scattering I i I n - " " Bottom-Up Approach: Calculation of Optical Susceptibility A Simp|ified Model • Solve the Bloch equations for some N to obtain the induced polarization PtO =t • Obtain the optical susceptibility XIt_,N) from Fourier Transforms of E and P: P(¢o) = %e_(_,N) E(_ OPTICAL • Then refractive index and optical gain follow X(co_V) -(21nb)fn(co,N) -(i/K)G(osV) • For each value of N, obtain Lorentzian oscillator and background Xo to approximate X({o,,N) = go (N) +AiN)/IiA(N)+t_+cx._5(,V)] l I I | I " | Polarization (Matedal) : :: The polarization dynamics ha.';a femtosecond time scale, much Treat Electric field as ascalar quantity. Within the slowly faster than the dynamics of Ihe electric field and the carrier varying envelope approximation, the time dependence of the density, and can often be a_ume,d to adjust instantaneously on electric field (E-field) envelope is governed by the time scale of the latter processes. The polarizalion can be _r approximated by P{D = P0itl *PI_._where, l_(t) =_)nb Z,)l N.Tp.Tt lE r nb , n% refractiveindex :phase, group 8 s(x, y ) derivation of refractive index profile 03c cavity resonance frequency nO permiltivity of vacuum = Icl 2Ln _ lint I r_ ) _=_,_ (reflectivityoflaand2 "dmirror wherelm, A,8, and, t.arefillin_ paralnelersapproximalng • r = ,8L,. /L L= cavity length, /.,i =width of acliveregion =effective coupling cort_ant :_er Density Equation : The dynamics of carrie¢ density is g_vernment by the Bloch equation carrtef d_mity _vt_,V =V _Dv VNi÷D,-rIVT,)>-,_.¥+_--_Im(P'E) J(x. y) pumping clrrent profile f_ plasma temperature y_ non -radiative carrier r_combinat ion rate D_N. Dr,_ diffusion ,-oefllcients due to N and T_, e elect ro4n chaise _ h= h 2_ h =plank ¢ot'6tant I a I i I Thermal-Electronic-Optical Couplin_ : PlasmaTemperature The tem peralure Lqderived from the energy (W_ equation ._rrler .[en_ity aw_ aw awaN i _ja,:_ aNa, t _W InFctkm healm_ ermsslon with _'- = 7Jw - #r (T/, - TI)+Rw rphonon Therefore. m 9tl_rre on_ _-_J_7"=V(nrNtVN_+Orr_Vr.,-Vr(r,-1",) ., k_'" ) --_- R v Hasma Temperature (conts.) : ..... The M_I • Modeling transverse mode dynamics of VCSEI.s • No a_umptions are nmde about about the type or where { - o! 1t number ofspatial (transverse) modes -- tWa-W0 +n-Er'/_-L'ra ozc-iy2'- P*E-iP*E • Nonlinear carrier density dependence of the optical gain and refractive index R,_ =_¢n,V ÷ , -T._.f-i_tLm (P .E) • Wavelength dependent dispersion effecLs on the O'r.'_ , D/-r diffusionco¢mcients due to ,V andTp optical gain and refractive index -_ plasmacoolmgrate • The 0ptical'Susceptibility is based on suhltions of the semiconductor BIoch equations yz polar izativn dephasingraie includes many-body efflcts includes device details (qw _l'rucruoe -- [n(;a,\s_GaAs) I i i i i i • Seleacftew transverse modt_ beforehand and then solve their time evolution (either by ordinary or partial differential equations) • Solve an eigenvalue problem [or the Helmholtz equation, which is uncoupled to the material equations • Solve time independent, coupled rate equation NL_IERICAL ALGORITHM methods, which contain diffractive terms (in the wave equation) and dillMsive transverse terms (in the carrier density equation) : ..**oo.° Effective Maxwell BIoch Equations Alternating Direction: Implicit (ADI) ql) DE_ ic z VeE_(_ 3n(x.y)C_C)E+ i_cF p - • Sweepin xdirection _t 2n_nb_ c ng 2ngnbe o _ • advance from tto t+_/2 I < • implicit differences are used a__[-,vl_c_frov, o,.:_FNll FNI for derivative of x. 12) • S_,eep iny direction • advance from t+6_2 to t+6t P_(t) =e,n_znE(t) [ • implicit differenc_l are usc{I dP1 ={-:_(N)}P(t)-=:(N IE(t)J ODE t t+/I.¢2 [or derivali ce of y. AD[ Illustration ....: Consider =GV E+F I-GAt([- f)(V2* +V2Y)I_(n+I) = ,,:,,.tn_./I ,r72__1_'1 ..r(n÷l/2) At the nta time level method I fully implicit Cmnk-Nicolson explicit ._)_e I O fL5 t - To alarge system implicitly in Iloth tile xand ydirections • ._ . =GII_f)V,EL )+GJV_E ( ) is computationally intensive. As an alternative... At Sweep in x-direction Sweep in y.direction ...... s 2, -.eq. ,.rf "+l_z) i_,.,i #_t,.r2 _ln+l) (n+[: 2_ r,,,i .'x¢72 _(/_) 7 • The above set of equations describe the lasing environment +AtF ('+1'2) +O(_t2&r2&y:)(_._-) • TheapproximatiolofLorantzian for Polarization is not good for absorption • At the region where N is small (l0 jz l/ra J) Second order accurate in time and space Solving Y(M-i} _ of IM-I} Iridin_onal equatioets W = 2k_Fsv ps.u2) isobtained by Taylor Stq-ies E=p=_I p_.tm. F,s,+At 8 P'V'_ Simplified ,"_and '_requations i | " " The Experiment Two.elemenl phased array of anliguided vertical-cavity in_ers by D. K. Serkland, et. al. Applied Physic_q Letters, Vol. 75. No. 24, De¢_ i999. • Zadjacent VCSELs z,_ ...... "_/_._-_. 1 _ O High optical index ,,........_..........._............................. COMPUTATION RESULTS between the 2VCSELs " ) • Emitted light ...... pied :,...... _! "_""_Z.: :.g:.:q_'X_'_: )'" _ a,nod,_VhCSEoLtsherinterfered L__L_ / _X' i . m | | t ii - :: :_e Computational Grid • near-field (I) and far-field 121images • 8(a) and 20 Ibl micron_ separations (a) _b) • The far field peak at the center for the 8- rnictotlseparation nopeak at thecenter tbrthe -_O-mlcm ii_ep_CallOlk | - Near-Field Sotution _a) " i!ii!i_i_i:_!i:i:i:i:i!i_:!?i.!ii:!i:ii!iii!.ti:i!i_i!i :i...... ii'i'i P ii | | - " -_ Maximum Power Guiding Index and Central Current: 85% 75% 65% 55% Central When do we have phase-locking (resonance)? Current When do we have maximum intensity output? 0.005 8.(x_v) t j _ J 9.7e+7Amp_m '_ _ 0.006 0.007 0.008 vcs FA_ Conclusion :: i • Changing Index affects on the [ar-_ield parterre. for lndexffi(_._6, no phase-l¢cx_ng, rest_ts are ume averaged, transttlon stage from )_l.x_ts to_ _ts increase the index, increase the ;'_attem at _e :truer edge of IheVCSEL • Changing Central Current alfec_ on _he rear-fleld pattet_ g5% of J alone doesn't create _asing envit_nmerit Increase the cur'_nt, increase "_e intensity Increase the cuY'r_nl, increase ,2_e _nterference at ",hecenlcr

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.