ebook img

Nanoporous Alumina: Fabrication, Structure, Properties and Applications PDF

371 Pages·2015·12.783 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanoporous Alumina: Fabrication, Structure, Properties and Applications

Springer Series in Materials Science 219 Dusan Losic Abel Santos E ditors Nanoporous Alumina Fabrication, Structure, Properties and Applications Springer Series in Materials Science Volume 219 Series editors Robert Hull, Charlottesville, USA Chennupati Jagadish, Canberra, Australia Richard M. Osgood, New York, USA Jürgen Parisi, Oldenburg, Germany Tae-Yeon Seong, Seoul, Korea, Republic of (South Korea) Shin-ichi Uchida, Tokyo, Japan Zhiming M. Wang, Chengdu, China TheSpringerSeriesinMaterialsSciencecoversthecompletespectrumofmaterials physics,includingfundamentalprinciples,physicalproperties,materialstheoryand design.Recognizingtheincreasingimportanceofmaterialsscienceinfuturedevice technologies, the book titles in this series reflect the state-of-the-art in understand- ingandcontrollingthestructureandpropertiesofallimportantclassesofmaterials. More information about this series at http://www.springer.com/series/856 Dusan Losic Abel Santos (cid:129) Editors Nanoporous Alumina Fabrication, Structure, Properties and Applications 123 Editors Dusan Losic AbelSantos Schoolof Chemical Engineering Schoolof Chemical Engineering TheUniversity of Adelaide TheUniversity of Adelaide Adelaide, SA Adelaide, SA Australia Australia ISSN 0933-033X ISSN 2196-2812 (electronic) SpringerSeries inMaterials Science ISBN978-3-319-20333-1 ISBN978-3-319-20334-8 (eBook) DOI 10.1007/978-3-319-20334-8 LibraryofCongressControlNumber:2015943361 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface Written by an outstanding group of experts in the field, this book presents an excitingandfreshcompilationofthelastadvancesanddevelopmentsinoneofthe most popular nanostructured materials, nanoporous anodic alumina. The electro- chemical and synthetic methods, as well as characterization techniques and applications will be discussed in detail throughout this book. Nanoporous anodic alumina was discovered during the first decades of the twentiethcenturyandwidelyusedinindustryforcorrosionprotection,carindustry, and metal decoration purposes for almost a century. The advent of high resolution scanning electron microscopy and other surface characterization techniques revealed the unique structural properties of this nanomaterial, which after a short time became one of the most explored nanostructures across a broad range of disciplines and fields. As an example, more than 3000 journal papers on nano- porous anodic alumina were published in last 20 years. This intensive research work can be explained by its simplicity of fabrication, unique self-ordered nano- porous structure, and a plethora of outstanding properties, which have spread the useofnanoporousanodicaluminainabroadrangeofapplicationsanddisciplines, including optics and photonics, electronics, membrane science, fundamental research, materials science, engineering, medicine, and industry. The aim of this book is to present the recent progress in nanoporous anodic alumina, with special focus on the understanding of its properties, preparation methods, structural engineering, and applications. The book covers selected topics with 11 Chapters that we believe will be the most significant contribution to this emerging and fast developing field. Chapter 1 presents the mechanisms of nanoporous alumina formation and self-organized growth, with special focus on the different concepts and aspects involved in this unresolved process. A more detailed insight into the theoretical modelsdescribingthiselectrochemicalprocessispresentedinChap.2.Chapter3is devoted to the synthesis of nanoporous anodic alumina by electrochemical anod- ization of low purity aluminum substrates, which is a critical factor for spreading the use of this nanomaterial in industrial applications. Chapter 4 compiles an out- standing insight into the different electrochemical approaches used to tailor the v vi Preface internal pore structure of nanoporous anodic alumina. The applicability of this nanomaterial is highly dependent on its surface chemistry. In that respect, Chap. 5 presents the different soft and hard modifications of nanoporous anodic alumina aimed to improve its chemical and physical properties. The fundamental aspects of the optical properties of nanoporous anodic alumina are shown in Chap. 6 and Chap. 7 compiles a variety of examples of applicability of nanoporous anodic alumina as optical biosensing platform, which is recognized as one of the most promising applications for this nanomaterial. Chapter 8 is devoted to optofluidic applications using nanoporous anodic alumina. The applicability of this nanoma- terial as a platform to develop electrochemical sensors, which is a very promising area to develop cost-competitive and simple devices for point-of-care biomedical and environmental analysis, is presented in detail in Chap. 9. Another exciting topic on the application of nanoporous anodic alumina is presentedinChap.10,wherenanoporousaluminamembranes forchromatography andmoleculartransportingarepresented.Finally,Chap.11presentsthemostrecent advancesintheuseofnanoporousanodicaluminafordrugdeliveryandbiomedical applications. This chapter shows new concepts and future perspectives towards advanced medical therapies including orthopedic and dental implants, heart/coronary/vasculature stents, immunoisolation, skin healing, tissue engineer- ing, and cell culture. As a result of the highly interdisciplinary nature of this book, it should be of profound and immediate interest for a broad audience, including undergraduate students,academicsandindustrialscientistsandengineersacrossmanydisciplines, ranging from physics, chemistry, engineering, materials science, bioengineering, and medicine. We believe that this book will also be valuable to many entrepre- neurial and business people, who are in the process of trying to better understand and valuate nanotechnology and new nanomaterials for future high-tech emerging applications and disrupting industries. Adelaide, Australia Dusan Losic Abel Santos Contents 1 Mechanisms of Nanoporous Alumina Formation and Self-organized Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Zhiyuan Ling and Yi Li 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Types of Anodic Aluminum Oxides (AAO) Membranes. . . . . 2 1.2.1 Nonporous AAO Membranes . . . . . . . . . . . . . . . . . 2 1.2.2 Porous AAO Membranes . . . . . . . . . . . . . . . . . . . . 3 1.3 Unit Cell Structure of Porous AAO Membranes . . . . . . . . . . 5 1.3.1 Unit Cell Structure . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Chemical Composition of Unit Cell. . . . . . . . . . . . . 7 1.4 Chemical Reactions During the Steady-State Growth of Porous AAO Membranes. . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Steady-State Anodization . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 Mild Anodization . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.2 Hard Anodization . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.3 The Maximum Anodization Voltage and the Breakdown Process . . . . . . . . . . . . . . . . . . 17 1.6 Unsteady-State Anodization . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6.1 Rule of Branched Channel Growth . . . . . . . . . . . . . 20 1.6.2 Competitive Growth Process. . . . . . . . . . . . . . . . . . 21 1.7 Microstructural Morphologies of Porous AAO . . . . . . . . . . . 24 1.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Theoretical Pore Growth Models for Nanoporous Alumina. . . . . . 31 Chuan Cheng and A.H.W. Ngan 2.1 Introduction of Nanoporous Alumina. . . . . . . . . . . . . . . . . . 31 2.2 Review of Pore Growth Models . . . . . . . . . . . . . . . . . . . . . 35 2.2.1 Electric Field Assisted Pore Growth. . . . . . . . . . . . . 35 2.2.2 Mechanical Stress Assisted Pore Growth . . . . . . . . . 37 vii viii Contents 2.3 A Kinetics Model for Pore Channel Growth in Nanoporous Alumina. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.1 Electric Potential Distribution Within AAO . . . . . . . 39 2.3.2 Ion Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.3 Interface Movement Equations . . . . . . . . . . . . . . . . 48 2.4 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . 50 2.5 Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 Synthesis of Nanoporous Anodic Alumina by Anodic Oxidation of Low Purity Aluminum Substrates . . . . . . . . . . . . . . . . . . . . . . 61 Leszek Zaraska, Ewa Wierzbicka, Elżbieta Kurowska-Tabor and Grzegorz D. Sulka 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 Synthesis of Porous Alumina on Low Purity Al Substrates. . . 65 3.2.1 Al Substrate Pre-treatment . . . . . . . . . . . . . . . . . . . 65 3.2.2 Anodic Alumina Growth . . . . . . . . . . . . . . . . . . . . 68 3.3 Practical Applications of AAO from Low Purity Substrates . . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.1 Template-Assisted Fabrication of Nanowire Arrays. . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.2 Nanoporous Capsules for Biofiltration and Drug Delivery. . . . . . . . . . . . . . . . . . . . . . . . . 94 3.3.3 Coloring of the Anodic Film. . . . . . . . . . . . . . . . . . 95 3.3.4 Catalyst Supports . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.3.5 Fabrication of Superhydrophobic Surfaces . . . . . . . . 98 3.3.6 Large Scale Fabrication of Nanostructured Low-Cost Aluminum Foil. . . . . . . . . . . . . . . . . . . . 98 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4 Structural Engineering of Porous Anodic Aluminum Oxide (AAO) and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Woo Lee 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.2 Structure of Porous Anodic Aluminum Oxide (AAO) and Its Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3 Self-ordered Porous Anodic Aluminum Oxide (AAO) . . . . . . 112 4.3.1 Mild Anodization (MA). . . . . . . . . . . . . . . . . . . . . 112 4.3.2 Hard Anodization (HA) . . . . . . . . . . . . . . . . . . . . . 115 Contents ix 4.4 Structural Engineering of Porous AAO . . . . . . . . . . . . . . . . 118 4.4.1 Microstructuring of Porous AAO. . . . . . . . . . . . . . . 118 4.4.2 Control of the Arrangement and Shape of the Pores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.3 Engineering of the Internal Pore Structure . . . . . . . . 121 4.5 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5 Soft and Hard Surface Manipulation of Nanoporous Anodic Aluminum Oxide (AAO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Abdul Mutalib Md Jani, Hanani Yazid, Anisah Shafiqah Habiballah, Abdul Hadi Mahmud and Dusan Losic 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.1.1 Soft Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.1.2 Hard Modifications . . . . . . . . . . . . . . . . . . . . . . . . 165 5.2 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6 Optical Properties of Nanoporous Anodic Alumina and Derived Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Josep Ferré-Borrull, Elisabet Xifré-Pérez, Josep Pallarès and Lluis F. Marsal 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.2 Interaction of Light with Porous Anodic Aluminum Oxide. . . 186 6.2.1 Anodic Aluminum Oxide: The Host Material . . . . . . 186 6.2.2 Porous Anodic Aluminum Oxide as an Effective Medium. . . . . . . . . . . . . . . . . . . . . 188 6.2.3 Photonic Properties: Interaction of Light with p-AAO Nanostructure. . . . . . . . . . . . . . . . . . . 192 6.3 Applications Based on the Optical Properties of Porous Anodic Aluminum Oxide. . . . . . . . . . . . . . . . . . . 197 6.3.1 Waveguides Based on Porous Anodic Aluminum Oxide. . . . . . . . . . . . . . . . . . . . . . . . . . 198 6.3.2 Porous Anodic Aluminum Oxide for Surface-Enhanced Raman Spectroscopy Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.3.3 Reflection Interference Spectroscopy . . . . . . . . . . . . 200 6.3.4 Photoluminescence-Based Applications of Porous Anodic Aluminum Oxide. . . . . . . . . . . . . 203 6.3.5 Porous Anodic Aluminum Oxide in Photon-Energy Conversion. . . . . . . . . . . . . . . . . 206 6.3.6 Alternative Applications. . . . . . . . . . . . . . . . . . . . . 207 6.4 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.