Nanomaterials in Waste Streams CurreNt KNoWledge oN riSKS aNd impaCtS Nanomaterials in Waste Contents Chapter 1. Assessments and recommendations Streams Chapter 2. Recycling of waste containing nanomaterials Chapter 3. Incineration of waste containing nanomaterials CurreNt KNoWledge oN riSKS Chapter 4. Landfilling of waste containing nanomaterials and nanowaste aNd impaCtS Chapter 5. The fate of engineered nanomaterials in sewage treatment plants and agricultural applications N a n o m a t e r ia ls in W a s t e S t r e a m s C u r r e N t K N o W l e d g e o N r iS K S a N d im p Consult this publication on line at http://dx.doi.org/10.1787/9789264249752-en. a C t S This work is published on the OECD iLibrary, which gathers all OECD books, periodicals and statistical databases. Visit www.oecd-ilibrary.org for more information. iSbN 978-92-64-24061-2 97 2015 16 1 p Nanomaterials in Waste Streams CURRENT KNOWLEDGE ON RISKS AND IMPACTS ThisworkispublishedundertheresponsibilityoftheSecretary-GeneraloftheOECD.The opinionsexpressedandargumentsemployedhereindonotnecessarilyreflecttheofficial viewsofOECDmembercountries. This document and any map included herein are without prejudice tothe status of or sovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundaries andtothenameofanyterritory,cityorarea. Pleasecitethispublicationas: OECD (2016), Nanomaterials in Waste Streams: Current Knowledge on Risks and Impacts, OECD Publishing,Paris. http://dx.doi.org/10.1787/9789264249752-en ISBN978-92-64-24061-2(print) ISBN978-92-64-24975-2(PDF) ThestatisticaldataforIsraelaresuppliedbyandundertheresponsibilityoftherelevantIsraeliauthorities.Theuse ofsuchdatabytheOECDiswithoutprejudicetothestatusoftheGolanHeights,EastJerusalemandIsraeli settlementsintheWestBankunderthetermsofinternationallaw. Photocredits:Cover©GeorgyShafeev/Shutterstock.com CorrigendatoOECDpublicationsmaybefoundonlineat:www.oecd.org/about/publishing/corrigenda.htm. ©OECD2016 Youcancopy,downloadorprintOECDcontentforyourownuse,andyoucanincludeexcerptsfromOECDpublications,databasesand multimediaproductsinyourowndocuments,presentations,blogs,websitesandteachingmaterials,providedthatsuitable acknowledgementofOECDassourceandcopyrightownerisgiven.Allrequestsforpublicorcommercialuseandtranslationrightsshould besubmittedtorights@oecd.org.Requestsforpermissiontophotocopyportionsofthismaterialforpublicorcommercialuseshallbe addresseddirectlytotheCopyrightClearanceCenter(CCC)[email protected]çaisd’exploitationdudroitdecopie(CFC) [email protected]. PREFACE Preface I mproving the management of materials and sharply reducing the impact of waste are keyelementsinanystrategytohalttheon-goingerosionofenvironmentalresilience.This meanspoliciesandapproachesthatencouragethesustainableuseofmaterialsandensure human health and environmental protection. Any such policies need to adapt to the rapidly changing manufacturing environment associated with technological and process innovations. One such innovation is the increasingly widespread use of engineered nanomaterials. Nanomaterialsareincreasinglyusedinavarietyofwidelyavailableproductssuchas sunscreen,cosmetics,antibacterialtextiles,lithiumionbatteries,glasscoatingandtennis rackets. Nanomaterials are utilised in a range of applications due to their significantly enhanced properties, enabled by their nano-scale structure. However, these special chemical and physical characteristics are also associated with possible risks to environmental health and safety.A relative blank spot in scientific understanding lies in the area of waste management.Waste containing these materials is currently managed along with conventional waste without sufficient knowledge of the associated risks and impactsontheenvironment. This report aims to provide an overview of the current state of scientific insights in this area, as well as the knowledge gaps. It investigates the literature on the fate and possible impacts of nanomaterials in specific waste treatment processes, including recycling,incineration,landfillingandwastewatertreatmentprocesses.Italsohighlights key messages, future research areas and possible approaches to effectively support the sustainablemanagementofnanomaterials. The report draws on knowledge generated within the OECD and beyond. The developmentofthereporthasbeenledbytheWorkingPartyonResourceProductivityand Waste (WPRPW) in close collaboration with the Working Party on Manufactured Nanomaterials (WPMN). The science in this area is rapidly evolving and the OECD is planningtopursueitseffortsinthisareaincloseco-operationwithotherorganisationsat the international and national level, including governments, research institutes, and academiccircles. SimonUpton Director OECDEnvironmentDirectorate NANOMATERIALSINWASTESTREAMS©OECD2016 3 FOREWORD Foreword T his publication has been developed by OECD’s Environmental Policy Committee through its WorkingPartyonResourceProductivityandWaste(WPRPW).Theindividualchaptersonrecycling, incineration, landfilling and wastewater treatment have been developed by technical experts from Switzerland,Germany,CanadaandFrance.AttheOECDSecretariattheprojectwasco-ordinatedby Peter Börkey and Shunta Yamaguchi under the supervision of Shardul Agrawala, Head of the EnvironmentandEconomyIntegrationDivision. Thisworkwasinitiatedtoattractattentiontothepotentialrisksthatarelinkedtothepresence ofnanomaterialsinwastetreatmentprocesses.Asafirststep,a“ScopingStudyonNanowaste”was developed by Jeremy Allan in May2012 followed by a workshop on “Safe Management of Nanowaste” held in Munich on 9th-11th May2012. This workshop contributed to identifying the stateofknowledgeinthisareaandledtothedevelopmentoffourreportsonspecificwastetreatment processes of recycling, incineration, landfilling and wastewater treatment, which are presented in thispublication. Alongwiththeseefforts,theWorkingPartyonManufacturedNanomaterials(WPMN)hasbeen investigating the possible impacts of nanomaterials on health and the environment since2006. In September2013, the OECD issued a Council Recommendation which suggests that existing regulatoryframeworksaregenerallyapplicabletoaddresssafetyassessmentofnanomaterialswith some possible adjustment required to handle the specificities of nanomaterials. Nevertheless, the OECD Council Recommendation does not imply that current waste management processes and techniques are generally appropriate in addressing potential impacts of nanomaterials. Current waste treatment facilities are not typically designed to handle Waste Containing Nanomaterials (WCNMs),potentiallyleadingtoemissionsintotheenvironmentandtheexposureofpeopletothese substances. Therefore, this publication aims to identify the status of knowledge in this area, the knowledgegaps,aswellastheareaswherefurtherworkshouldbeconductedinpriority. Giventhattheresearchonnanomaterialsisrapidlyevolving,thispublicationaimstodelivera snapshotofthecurrentknowledgeontherisksandimpactsofnanomaterialsenteringthesewaste streams.Thecurrentfindingsareacompilationofintermediateresultswhicharelikelytoevolveas thescienceprogresses. The report has been prepared as a joint effort of WPRPW member countries. The OECD Secretariat led the work in finalising the publication and drafted the assessment and recommendationschapterandtheexecutivesummary.Theindividualchaptershavebeendeveloped bythefollowingauthors: Chapter1 on assessment and recommendations was prepared by Peter Börkey and Shunta YamaguchioftheOECDSecretariat. Chapter2onrecyclingofwastecontainingnanomaterialswaspreparedbyMathiasTellenbach fromTerraConsultBern(Switzerland). NANOMATERIALSINWASTESTREAMS©OECD2016 5 FOREWORD Chapter3onincinerationofwastecontainingnanomaterialswaspreparedbyJuliaVogeland BenjaminWiechmannwithcontributionsfromSusannKrause,GermanFederalEnvironmentAgency (UBA). Chapter4 on landfilling of waste containing nanomaterials was drafted by Martha King, JacintheSéguinandAshleyHuiofEnvironmentCanada. Chapter5 on nanomaterials released into wastewater treatment sludge was drafted by Jean- Yves Bottero,researchdirectorattheCNRS (NationalCentre for ScientificResearch inFrance) and directorofLabex-SERENADE. The report also benefitted from extensive comments from OECD’sWorking Party on Resource Productivity and Waste and the Working Party on Manufactured Nanomaterials, including the countrydelegationsaswellasindustry,representedbytheBusinessandIndustryAdvisoryCouncil totheOECD.TheOECDSecretariatwouldliketoparticularlythankSwitzerland,Germany,Canada andFrancefortheirintellectualandfinancialcontributionstothework. Follow OECD Publications on: http://twitter.com/OECD_Pubs http://www.facebook.com/OECDPublications http://www.linkedin.com/groups/OECD-Publications-4645871 http://www.youtube.com/oecdilibrary OECD Alerts http://www.oecd.org/oecddirect/ 6 NANOMATERIALSINWASTESTREAMS©OECD2016 TABLEOFCONTENTS Table of contents Acronyms ................................................................. 9 Executivesummary......................................................... 11 Chapter1.Assessmentandrecommendations.................................. 15 Whatisthelinktowastemanagement? ................................... 17 WhatisthecurrentstateofknowledgeonthefateofWCNMsinwastetreatment facilities? .............................................................. 18 Howmuchdoweknowaboutthebestwaystomanagetherisksidentifiedsofar? 22 Whatisthepossiblewayforward? ........................................ 22 Recommendedareasforfurtherresearchonwastecontainingnanomaterials... 24 References ............................................................. 25 Chapter2.Recyclingofwastecontainingnanomaterials ......................... 29 Theimportanceofrecyclinginwastemanagement.......................... 30 Keynanomaterialsinproducts............................................ 31 Fateofnanomaterialsinrecyclingoperationsandpotentialexposure.......... 32 Risksrelatedtonanomaterialinwaste..................................... 33 RecyclingproceduresandBestAvailableTechniques(BAT).................... 34 Theissueofnon-standardtreatmentofwaste .............................. 35 Knowledgegapsandpossibleactivities .................................... 36 Notes.................................................................. 37 References ............................................................. 37 Annex2.A1.Wastestreamspossiblycontainingnanomaterials ................ 41 Chapter3.Incinerationofwastecontainingnanomaterials....................... 43 Relevanceofnanotechnology............................................. 44 Informationonwastecontainingnanomaterials(WCNMs)(quantity,composition) 45 Wastetreatmentoption:wasteincineration ................................ 46 Fateandbehaviourofengineerednanomaterials(ENMs)inwasteincineration plants ................................................................. 47 Summaryandoutlook................................................... 49 References ............................................................. 50 Annex3.A1.Disposalroutesofmunicipalsolidwaste......................... 52 Chapter4.Landfillingofwastecontainingnanomaterialsandnanowaste ......... 53 Landfillsandtheintroductionofnanomaterialsinwaste..................... 54 Fateofnanomaterialsinlandfills.......................................... 59 Nanomaterialsandleachatetreatment .................................... 63 Regulationsandmanagementofnanomaterialsinwaste..................... 65 NANOMATERIALSINWASTESTREAMS©OECD2016 7 TABLEOFCONTENTS Conclusionsandknowledgegaps ......................................... 67 Notes.................................................................. 69 References ............................................................. 69 Chapter5.Thefateofengineerednanomaterialsinsewagetreatmentplants andagriculturalapplications............................................. 75 Processesusedinurbansewagetreatmentplants:theroleofactivatedsludge .. 76 Whatdoweknowaboutthepresenceofnanomaterialsinthesludgefromsewage treatmentplants?....................................................... 77 Whattransformationscannanoparticlesundergoinsewagetreatmentplants andhowdoesthisaffectreactoroperation? ................................ 79 CanwepredicttheretentionandtransformationofENMsbyactivatedsludge? Useofretention,aggregationandsedimentationmodels..................... 82 Whatrisksareinvolvedinagriculturalapplications?......................... 84 Currentresearchoverview:locationofteamsinvolvedinthisfieldthroughout theworld .............................................................. 84 Whatresearchstillneedstobecarriedout? ................................ 85 References ............................................................. 86 Glossary................................................................... 89 Tables 1.1. PossiblesourcesofWCNMs ........................................... 19 1.2. PossibleleakageroutesofENMsfromwastetreatmentoperations.......... 22 1.3. CurrentstateofknowledgeandknowledgegapsofthefateofENMs inwastetreatmentprocesses ......................................... 23 2.1. SummaryofreportednanomaterialsinWCNM .......................... 32 2.2. KnowledgegapsandproposedmeasuresinthecontextofrecyclingofWCNM 37 2.A1.1. SelectedwastestreamswithpossibleWCNM............................ 41 3.1. Summaryofengineerednanomaterials(ENMs)producedandusedinEurope andintheworld..................................................... 45 5.1. ProductionandmanagementofsewagetreatmentplantsludgeinFrance (2000-04) ........................................................... 76 5.2. Occurrenceofnanoparticlesoriginatingfromeverydayconsumerproducts.. 79 5.3. Percentageofnanoparticlesassociatedwithbacterialaggregatesinanaerobic andanaerobicreactorofanurbansewagetreatmentplant................ 83 Figures 3.A1.1. DisposalroutesofmunicipalsolidwasteintheOECDin2013.............. 52 5.1. Wastewatertreatmentstages.......................................... 77 5.2. Publicationsonnanomaterialscorrespondingtocertainresearchfields..... 78 5.3. ConcentrationofmetallicelementsandpresenceofAg2Snanoparticles inurbansludge...................................................... 78 8 NANOMATERIALSINWASTESTREAMS©OECD2016