ebook img

Nanomaterials: biomedical, environmental, and engineering applications PDF

313 Pages·2018·6.176 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanomaterials: biomedical, environmental, and engineering applications

Nanomaterials: Biomedical, Environmental, and Engineering Applications Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106 Publishers at Scrivener Martin Scrivener ([email protected]) Phillip Carmical ([email protected]) Nanomaterials: Biomedical, Environmental, and Engineering Applications Edited by Suvardhan Kanchi, Shakeel Ahmed, Myalowenkosi I. Sabela and Chaudhery Mustansar Hussain This edition first published 2018 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2018 Scrivener Publishing LLC For more information about Scrivener publications please visit www.scrivenerpublishing.com. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other- wise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. Wiley Global Headquarters 111 River Street, Hoboken, NJ 07030, USA For details of our global editorial offices, customer services, and more information about Wiley prod- ucts visit us at www.wiley.com. Limit of Liability/Disclaimer of Warranty While the publisher and authors have used their best efforts in preparing this work, they make no rep- resentations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant- ability or fitness for a particular purpose. No warranty may be created or extended by sales representa- tives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further informa- tion does not mean that the publisher and authors endorse the information or services the organiza- tion, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Library of Congress Cataloging-in-Publication Data ISBN 978-1-119-37026-0 Cover image: Pixabay.Com Cover design by Russell Richardson Set in size of 11pt and Minion Pro by Exeter Premedia Services Private Ltd., Chennai, India Printed in the USA 10 9 8 7 6 5 4 3 2 1 Contents Preface xiii Part I: Synthesis and Characterization 1 1 Synthesis, Characterization and General Properties of Carbon Nanotubes 3 Falah H. Hussein, Firas H. Abdulrazzak and Ayad F. Alkaim 1.1 Introduction 4 1.2 The History of Carbon Nanotubes 5 1.3 Graphene 7 1.4 Graphite 10 1.5 Fullerene 11 1.6 Rehybridization 11 1.7 Structure of Carbon Nanotubes (CNTs) 13 1.8 Classification of CNTs 13 1.8.1 Classification by Chirality 14 1.8.2 Classification by Conductivity 15 1.8.3 Classification by Layers 15 1.9 Crystal Structures of Carbon Nanotubes 15 1.10 Synthesis Methods 17 1.10.1 Arc-Discharge 17 1.10.2 Laser Ablation 18 1.10.3 Flame Methods 19 1.10.4 Chemical Vapor Deposition 20 1.11 The Purification Process of CNTs 22 1.12 Mechanism of Growth CNTs 23 1.12.1 The Model for Carbon Filament Growth 23 1.12.1.1 Tip Growth Model 24 1.12.1.2 Base Growth Model 24 1.12.2 Free Radical Condensate 25 v vi Contents 1.12.3 Yarmulke Mechanism 26 1.13 Properties of Carbon Nanotubes 27 1.13.1 Electronic Properties of Carbon Nanotubes 27 1.13.2 Mechanical Properties of CNTs 28 1.14 Applications of Carbon Nanotubes 28 1.14.1 Fuel Cells 29 1.14.2 Solar Cells 30 1.14.3 Dye-Sensitized Solar Cells 32 1.15 Characterization of CNTs 32 1.15.1 Raman Spectroscopy 32 1.15.1.1 G band 36 1.15.1.2 D Band 37 1.15.1.3 Radial Breathing Mode 37 1.15.2 X-Ray Diffraction 38 1.15.3 X-Ray Photoelectron Spectroscopy 39 1.15.4 Thermo Gravimetric Analysis 41 1.15.5 Transmission Electron Microscopy 43 1.15.6 Scanning Electronic Microscopy 45 1.15.7 Scanning Helium Ion Microscopy 46 1.16 Composite of CNTs/Semiconductors 47 1.17 Recent Updates on Synthesis of CNTs 49 References 50 2 Synthesis and Characterization of Phosphorene: A Novel 2D Material 61 Sima Umrao, Narsingh R. Nirala, Gaurav Khandelwal and Vinod Kumar 2.1 Introduction 61 2.1.1 History of Phosphorene 62 2.1.2 Crystal Structure 63 2.1.3 Band Structure 65 2.2 Synthesis of Phosphorene 65 2.2.1 Mechanical Exfoliation 65 2.2.2 Plasma-Assisted Method 66 2.2.3 Liquid-Phase Exfoliation 68 2.2.4 Chemical Vapor Deposition 70 2.3 Characterization of Phosphorene 70 2.3.1 Structural Charcterizations 71 2.3.2 Spectroscopic Characterizations 73 2.3.3 Optical Band Gap Characterization 76 2.4 Environment Stability Issue of Phosphorene 80 Contents vii 2.5 Summary and Future Prospective 82 References 83 3 Graphene for Advanced Organic Photovoltaics 93 Tanvir Arfin and Shoeb Athar 3.1 Introduction 93 3.2 History of Graphene 94 3.3 Structure of Graphene 94 3.4 Graphene Family Nanomaterials 94 3.5 Properties of Graphene 95 3.5.1 Physicochemical Properties 95 3.5.2 Thermal and Electrical Properties 96 3.5.3 Optical Properties 96 3.5.4 Mechanical Properties 96 3.5.5 Biological Properties 96 3.6 Graphene for Advanced Organic Photovoltaics 96 3.6.1 Transparent Electrodes of OPVs 96 3.6.2 Acceptor Material in OPVs 98 3.6.3 Interfacial Layer in OPVs 100 3.7 Conclusion 102 References 102 4 Synthesis of Carbon Nanotubes by Chemical Vapor Deposition 105 Falah H. Hussein and Firas H. Abdulrazzak 4.1 Introduction 105 4.2 Synthesis Methods 107 4.2.1 Arc-Discharge 108 4.2.2 Laser Ablation 109 4.2.3 Flame Methods 109 4.2.4 Chemical Vapor Deposition 110 4.3 The Parameters of CVD 112 4.3.1 CNT Precursors 112 4.3.2 Type of Catalyst 114 4.3.3 Effect of Temperature 115 3.4.4 Gas Flow Rates 116 4.4 Deformations and Defects in Carbon Nanotubes 118 4.4.1 Deformations in Carbon Nanotubes 118 4.4.2 Defects in Carbon Nanotubes 120 4.5 Characterization of CNTs 123 4.6 Conclusion 126 References 126 viii Contents Part II: Environmental and Engineering Applications 133 5 A Review of Pharmaceutical Wastewater Treatment with Nanostructured Titanium Dioxide 135 Lavanya Madhura and Shalini Singh 5.1 Introduction 135 5.2 Heterogeneous Photocatalysis 137 5.3 Pharmaceuticals in the Environment 137 5.4 Role of TiO in Photocatalysis for Degradation, 2 Mineralization, and Transformation Process of Pharmaceuticals 138 5.5 Applications 139 5.6 Conclusion 146 Acknowledgment 147 References 147 6 Nanosilica Particles in Food: A Case of Synthetic Amorphous Silica 153 Rookmoney Thakur and Shalini Singh 6.1 Introduction 153 6.1.1 The Different Forms of Silica 155 6.1.2 Synthetic Amorphous Silica 156 6.1.3 Physical and Chemical Properties of SAS 157 6.1.4 Silica Applications in the Food Industry 157 6.1.5 Toxicity 158 6.1.6 Conclusion 159 References 160 7 Bio-Sensing Performance of Magnetite Nanocomposite for Biomedical Applications 165 Rajasekhar Chokkareddy, Natesh Kumar Bhajanthri, Bakusele Kabane and Gan G. Redhi 7.1 Introduction 166 7.1.1 Hematite 166 7.1.2 Maghemite 168 7.1.3 Magnetite 169 7.1.4 Magnetism and Magnetic Materials 170 7.1.5 Types of Magnetic Substances 170 7.1.5.1 Paramagnetic Substances 171 7.1.5.2 Diamagnetic Substances 171 7.1.5.3 Ferri Magnetic Substances 172 7.1.5.4 Ferro Magnetic Substances 172 Contents ix 7.1.5.5 Anti-Ferro Magnetic Substances 173 7.1.6 Shape, Size, and Magnetic Properties 177 7.1.7 Synthesis Methods of Magnetic Nanoparticles 178 7.1.8 Advantages of Magnetic Nanomaterials 178 7.1.9 Surface Modifications of Magnetic Nanoparticles 181 7.2 Potential Applications of Magnetic Nanoparticles 181 7.2.1 Magnetic Separation 182 7.2.2 Magnetic Resonance Image 184 7.2.3 Targeted Drug Delivery Systems 186 7.2.4 Magnetic Hyperthermia 188 7.2.5 Gene Delivery 190 7.3 Conclusion 191 References 192 8 The Importance of Screening Information Data Set in Nanotechnology 197 Khan Ameera Bibi, Suruj Gitesh and Shalini Singh 8.1 Introduction 198 8.2 Review of the Literature 201 8.2.1 Carbon Nanotubes 201 8.2.2 Nanosilver 203 8.2.3 Carbon Nanotubes vs. Asbestos 203 8.2.4 Density 205 8.2.5 Risk Assessment 205 8.2.6 Using SIDS as a Risk Assessment Tool for ENPs 206 8.3 Behavioral Patterns of Engineered Nanoparticles 206 8.3.1 Products Containing Nanosilver 207 8.3.2 Toxicity Effects of Nanosilver on Humans 208 8.3.3 Toxicity Effects on the Environment 210 8.4 Conclusions and Recommendations 213 References 213 9 Nanomaterials for Biohydrogen Production 217 Periyasamy Sivagurunathan, Abudukeremu Kadier, Ackmez Mudhoo, Gopalakrishnan Kumar, Kuppam Chandrasekhar, Takuro Kobayashi and Kaiqin Xu 9.1 Introduction 218 9.2 Major Biohydrogen Production Pathways 219 9.2.1 Biophotolysis 219 9.2.2 Photo-Fermentation 220 9.2.3 Dark Fermentation 220 x Contents 9.2.4 Microbial Electrolysis Cell 221 9.3 Nanaparticle Effects on Biohydrogen Production 222 9.3.1 Dark Fermentative Hydrogen Production 222 9.3.2 Photo Fermentative Hydrogen Production 223 9.3.3 Photocatalytic Hydrogen (H2) Production 226 9.3.4 MEC-Based Hydrogen Production 226 9.4 Biohydrogen Producing Associated with Immobilized Enzymes (Cellulases and Hydrogenases) 227 9.5 Outlook and Concluding Notes 229 Acknowledgment 232 References 232 10 A Framework for Using Nanotechnology in Military Gear 239 Hlophe Nkosingiphile.Siphesihle, Mbatha Precious Hlengiwe and Shalini Singh 10.1 Introduction 240 10.2 Literature Review 241 10.2.1 Antibacterial and Self-cleaning Properties 241 10.2.2 Ballistic Protection Properties 241 10.2.3 Biological and Chemical Protection Properties 242 10.2.4 Health Monitoring Sensing Properties 242 10.2.5 UV Protection Properties 243 10.2.6 Ethics, Safety, and the Enhancement of Soldier’s Performance 243 10.2.7 Risks in Engineered Nanomaterials 244 10.2.8 Control of Risks 245 10.3 Application of Nanotechnology in the Military 246 10.3.1 Protective Properties 246 10.3.1.1 Environmental Hazard Protection 246 10.3.1.2 Biological and Chemical Hazard Protection 247 10.3.1.3 Injury Protection 248 10.3.2 Medical Properties 248 10.3.2.1 B io-sensing 248 10.3.2.2 Tissue Repair 248 10.3.3 Ethics, Safety, and the Enhancement of Soldier’s Performance 248 10.3.4 Key Transmissions of ENM Exposure 249 10.4 Conclusions 251 10.4.1 Recommendations 252 References 253

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.