ebook img

Nanodevices for Photonics and Electronics PDF

438 Pages·2016·13.937 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nanodevices for Photonics and Electronics

Nanodevices for Photonics and Electronics © 2016 by Taylor & Francis Group, LLC Nanodevices for Photonics and Electronics Advances and Applications edited by Paolo Bettotti © 2016 by Taylor & Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20151214 International Standard Book Number-13: 978-981-4613-75-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reason- able efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza- tion that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2016 by Taylor & Francis Group, LLC November12,2015 17:8 PSPBook-9inx6in 00-Bettotti-prelims Contents Preface xi 1 Introduction 1 PaoloBettotti 2 PhotonicCrystals 11 PaoloBettotti 2.1 Introduction 11 2.2 One-DimensionalPCsandTheirDispersion Properties 15 2.3 AnalogywithQuantumMechanicalSchroedinger Equation 17 2.4 1DDefectModes 22 2.5 Two-DimensionalPhotonicCrystals 25 2.6 2DDefectModes 29 2.7 Exploitingthe2DPCDispersionProperties 34 2.8 2.5-DimensionalPhotonicCrystals 38 2.9 Three-DimensionalPhotonicCrystals 43 2.10NonlinearOptics 45 2.11Conclusions 47 3 EngineeringAperiodicSpiralOrderinNanophotonics: FundamentalsandDeviceApplications 57 LucaDalNegro,NateLawrence,andJacobTrevino 3.1 IntroductiontoAperiodicPhotonicStructures 58 3.2 PeriodicandAperiodicOrder 59 3.3 ClassificationofAperiodicStructures 61 3.4 RotationalSymmetryinAperiodicStructures 66 © 2016 by Taylor & Francis Group, LLC November12,2015 17:8 PSPBook-9inx6in 00-Bettotti-prelims vi Contents 3.4.1 AperiodicSpiralOrder:FromPhyllotaxisto Nanophotonics 69 3.4.2 StructuralPropertiesofVogelSpirals 74 3.5 OpticalResonancesofVogelSpiralArrays 81 3.5.1 MultifractalScalingofVogelSpirals 84 3.5.2 OpticalModeAnalysisofVogelSpirals 89 3.6 DeviceApplicationsofVogelSpirals 94 3.6.1 AbsorptionEnhancementinThin-Film Silicon 94 3.6.2 RadiationEngineeringwithErbium-Doped VogelArrays 98 3.6.3 EngineeringtheOrbitalAngularMomentum ofLight 103 3.6.4 DiffractedBeamPropagationfromAperiodic ChiralSpirals 107 3.6.5 ExperimentalDemonstrationofOAM GenerationandControl 110 3.7 OutlookandConclusions 115 4 DisorderedPhotonics 127 FrancescoRiboli 4.1 Introduction 127 4.2 Diffusion 131 4.3 LightTransport:MicroscopicalDescription 132 4.3.1 SingleScattering 134 4.3.2 MultipleScattering 136 4.3.3 TransportofIntensity 139 4.4 AndersonLocalizationofLight 143 4.4.1 LocalizationofLightinTwoDimensions 145 4.4.2 HybridizationofLocalizedModes 148 4.5 Light-TrappingMechanismforPhotovoltaic Applications 150 4.5.1 EarlyDesignsandtheProblemofCollection Efficiency 151 4.5.2 RecentDesignstoCoherentlyManageand TraptheFlowofLightinUltrathin DielectricFilms 154 4.5.3 Conclusions 157 © 2016 by Taylor & Francis Group, LLC November12,2015 17:8 PSPBook-9inx6in 00-Bettotti-prelims Contents vii 5 NanowireArchitectureforFastElectronicDevices 163 LeonardoViti,AlessandroPitanti,andMiriamS.Vitiello 5.1 Introduction 163 5.1.1 TerahertzDetection 163 5.1.2 DetectionMechanisminFETs 166 5.2 NanowireTHzDetectors 167 5.2.1 ContactingtheNanowire 171 5.2.2 RadiationCoupling 175 5.2.2.1 Bowtieantenna 177 5.2.2.2 Logperiodicantenna 178 5.2.3 Nanofabrication 179 5.2.4 Methods 181 5.2.4.1 Transportmeasurements 181 5.2.4.2 Opticalmeasurements 185 5.2.4.3 Noisemeasurements 187 5.2.4.4 ResponsivityandNEP 188 5.3 HomogeneousandHeterostructuredNanowire FETDetectors 189 5.3.1 InAs-BasedNanowireFETs 189 5.3.1.1 Influenceofdopinglevel 189 5.3.1.2 Photodetection 194 5.3.2 InAs-/InSb-BasedNanowireFET 199 5.3.2.1 Electricalproperties 201 5.3.2.2 Photodetection 203 6 Nano-OptomechanicalOscillators:NovelEffectsand Applications 209 DanielNavarro-Urrios 6.1 BasicConceptsofOptomechanics 210 6.2 Nano-optomechanicalOscillators 214 6.3 BasicPropertiesofOptomechanicalCrystals: CaseStudy 216 6.3.1 ExperimentalSetup 217 6.3.1.1 Taperedfiberfabricationprocedure 218 6.3.2 1DSiliconOptomechanicalCrystals 220 6.3.2.1 Geometryofthestructures 220 6.4 OpticalandMechanicalSimulations 221 6.4.1 Optomechanicalcharacterization 223 © 2016 by Taylor & Francis Group, LLC November12,2015 17:8 PSPBook-9inx6in 00-Bettotti-prelims viii Contents 6.4.2 TuningtheOpticalandMechanicalProperties oftheOptomechanicalCrystalwithCoupled OpticalPower 227 6.4.2.1 Effectsoffiberloadingonopticaland mechanicalproperties 232 6.4.2.2 Experimentalobservationof dynamicalbackaction 234 6.4.2.3 Mechanicalamplificationat5.46GHz 235 7 QuantumDot–BasedNano-optoelectronicsand Photonics 239 JuanP.MartinezPastorandGuillermoMun˜ozMatutano 7.1 Introduction 242 7.1.1 BasicsofQD-BasedSemiconductors 242 7.2 SynthesisandGrowthofSemiconductor QuantumNanostructures 244 7.2.1 ColloidalNanocrystals 244 7.2.2 Self-AssembledQuantumDots 245 7.3 ElectronicStructure 247 7.3.1 ColloidalQDs 248 7.3.2 Self-AssembledQDs 252 7.4 OpticalPropertiesofaSingleQuantumDot 254 7.5 RecombinationDynamicsinQuantumDots 260 7.5.1 RateEquationApproach:Recombination DynamicsasaFunctionofTemperature 261 7.5.2 MasterEquationforMicrostates:Carrier DynamicsinaSingleQDattheGS 263 7.5.3 NonradiativeProcessesinColloidalQDs: BlinkingandAugerRecombination 265 7.6 QuantumDotPhotonics 267 7.7 QD-BasedOptoelectronicDevices 273 7.7.1 QuantumDotLEDs 274 7.7.2 LaserDiodes 279 7.7.3 SolarCellsandPhotodetectorsBasedon ColloidalQDs 283 7.7.4 OtherQDOpticalDevices 287 7.8 NanophotonicsBasedonSingleQDs 288 © 2016 by Taylor & Francis Group, LLC November12,2015 17:8 PSPBook-9inx6in 00-Bettotti-prelims Contents ix 8 GroupIII–VonSilicon:ABrand-NewOptoelectronics 309 BadhiseBenBakir,CorradoSciancalepore,AntoineDescos, He´le´neDuprez,DamienBordel,andSylvieMenezo 8.1 Introduction 310 8.2 BridgingLaserTechnologytoSiliconMaturity 312 8.3 III–V-on-SiliconLasers 315 8.3.1 III–V-on-SiIntegrationforHybridLasers 319 8.3.2 DistributedBraggReflectorLasers 322 8.3.3 DistributedFeedbackLasers 330 8.4 InnovativeProofsofConcepts 337 8.4.1 IntegratingVCSELandSiliconPhotonics 337 8.4.2 III–VonSOIHCG-VCSELs 339 8.5 Conclusions 342 9 ApplicationofOrganicSemiconductorstowardTransistors 351 YoshihiroKubozono,XuexiaHe,ShinoHamao,EriUesugi, YumaShimo,TakahiroMikami,HidenoriGoto, andTakashiKambe 9.1 IntroductiontoField-EffectTransistors 352 9.2 HistoricalViewoftheDevelopmentofOrganic Transistors 357 9.3 OperationMechanismofOrganicTransistors 360 9.4 TransistorDeviceFabrication 364 9.5 TypicalExamplesofN-ChannelandP-Channel OrganicTransistors 368 9.6 FutureProspectsforOrganicTransistors 373 10 PhotonicRingResonatorsforBiosensing 385 CarlosErrando-HerranzandKristinnB.Gylfason 10.1 Introduction 385 10.1.1 Label-FreeBiosensing 386 10.1.2 BiosensingwithPlanarOpticalWaveguides 387 10.1.3 CurrentChallenges 389 10.1.3.1 Parallelization 390 10.1.3.2 Sampletransport 392 10.2 History 392 10.2.1 PlanarWaveguideEvanescent-Field-Based Sensors 393 © 2016 by Taylor & Francis Group, LLC November12,2015 17:8 PSPBook-9inx6in 00-Bettotti-prelims x Contents 10.2.2 PlanarRingResonatorSensors 393 10.2.3 SampleHandlingonPlanarRingResonator Sensors 396 10.3 Theory 399 10.3.1 ScatteringMatrixforaSide-Coupled WaveguideRingResonator 399 10.3.1.1 Powertransfer 402 10.3.1.2 Resonances 402 10.3.1.3 Freespectralrange 403 10.3.1.4 Resonatorfinesseandquality factor 404 10.3.1.5 Sensing 404 10.3.1.6 Volumesensing 405 10.3.1.7 Surfacesensing 405 10.3.2 SensorFigureofMeritandDetectionLimit 405 10.4 Fabrication 406 10.4.1 Sensors 406 10.4.1.1 Polymer-basedsensors 406 10.4.1.2 Thin-solid-film-basedsensors 407 10.4.2 Sample-HandlingSystem 408 10.4.2.1 SU-8 409 10.4.2.2 PDMS 409 10.4.2.3 OSTE 410 10.5 Summary 412 Index 425 © 2016 by Taylor & Francis Group, LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.