ebook img

Nano-engineering of composite material via reactive mechanical alloying/milling (RMA/M) PDF

336 Pages·2017·4.46 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nano-engineering of composite material via reactive mechanical alloying/milling (RMA/M)

MMiicchhiiggaann TTeecchhnnoollooggiiccaall UUnniivveerrssiittyy DDiiggiittaall CCoommmmoonnss @@ MMiicchhiiggaann TTeecchh Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2014 NNaannoo--eennggiinneeeerriinngg ooff ccoommppoossiittee mmaatteerriiaall vviiaa rreeaaccttiivvee mmeecchhaanniiccaall aallllooyyiinngg//mmiilllliinngg ((RRMMAA//MM)) Edward Andrew Laitila Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Materials Science and Engineering Commons Copyright 2014 Edward Andrew Laitila RReeccoommmmeennddeedd CCiittaattiioonn Laitila, Edward Andrew, "Nano-engineering of composite material via reactive mechanical alloying/milling (RMA/M)", Dissertation, Michigan Technological University, 2014. https://doi.org/10.37099/mtu.dc.etds/949 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Materials Science and Engineering Commons (cid:17)(cid:4)(cid:17)(cid:18)(cid:486)(cid:8)(cid:17)(cid:10)(cid:12)(cid:17)(cid:8)(cid:8)(cid:21)(cid:12)(cid:17)(cid:10)(cid:3)(cid:18)(cid:9)(cid:3) (cid:6)(cid:18)(cid:16)(cid:19)(cid:18)(cid:22)(cid:12)(cid:23)(cid:8)(cid:3)(cid:16)(cid:4)(cid:23)(cid:8)(cid:21)(cid:12)(cid:4)(cid:15)(cid:3)(cid:25)(cid:12)(cid:4)(cid:3) (cid:21)(cid:8)(cid:4)(cid:6)(cid:23)(cid:12)(cid:25)(cid:8)(cid:3)(cid:16)(cid:8)(cid:6)(cid:11)(cid:4)(cid:17)(cid:12)(cid:6)(cid:4)(cid:15)(cid:3) (cid:4)(cid:15)(cid:15)(cid:18)(cid:28)(cid:12)(cid:17)(cid:10)(cid:512)(cid:16)(cid:12)(cid:15)(cid:15)(cid:12)(cid:17)(cid:10)(cid:3)(cid:523)(cid:21)(cid:16)(cid:4)(cid:512)(cid:16)(cid:524)(cid:3)(cid:3) (cid:3) (cid:3) (cid:3) By Edward Andrew Laitila A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Materials Science and Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2014 © 2014 Edward A. Laitila This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Materials Science and Engineering. Department of Materials Science and Engineering Dissertation Advisor: Dr. Donald E. Mikkola Committee Member: Dr. Stephen L. Kampe Committee Member: Dr. Walter W. Milligan Committee Member: Dr. Michael E. Mullins Department Chair: Dr. Stephen L. Kampe Dedication “To my father, who passed away days after my defense, whom while not formally educated was a very intelligent man, who taught me independence, showing me how hard work pays off, and how to work with my hands……..thank you, for building the foundation that lead me to a passion I enjoy, your quick wit, and critical thinking skills rival anyone.” “To a person in my life who I developed such a special relationship with, that most never get to experience in their lifetime…this work is also dedicated to my supervisor, my teacher, my colleague, my advisor, my mentor, and more importantly my friend Dr. Donald E. Mikkola, who also taught me three very important words: think about it!” “Lastly and most importantly, I finally dedicate this work to my lovely wife, whose compassion and understanding during this long ordeal, allowed me to complete this work as a side part or our life…..without your love, support, and encouragement, this would have never happened.” Table of Contents Approval Page .................................................................................................................... 2 Dedication........................................................................................................................... 3 List of Figures .................................................................................................................... 4 List of Tables .................................................................................................................... 11 Acknowledgements ........................................................................................................... 13 Abstract ............................................................................................................................. 14 I. Introduction ............................................................................................................. 15 A. Chromium-Modified Titanium Trialuminide................................................................... 16 B. Strengthening Mechanisms Investigated .......................................................................... 19 1. Grain Size Refinement ............................................................................................ 20 2. Dispersion Strengthening ........................................................................................ 23 C. Polycrystalline Materials .................................................................................................... 25 1. Grain Boundary Structure ....................................................................................... 26 2. Nanostructure Materials .......................................................................................... 30 3. Severe Deformation Processing .............................................................................. 34 D. Mechanical Alloying ............................................................................................................ 39 1. Reactive Mechanical Alloying/Milling (RMA/M) .................................................. 43 2. MA of Titanium-Aluminum .................................................................................... 44 3. Modeling of Mechanical Alloying .......................................................................... 46 E. Chromium-Modified Titanium Trialuminide Matrix Composites ................................. 52 F. Research Genesis ................................................................................................................. 53 II. Experimental............................................................................................................57 A. Experimental Procedure ..................................................................................................... 57 1. Production of Cubic Trialuminide Powder – Reading Alloy .................................. 57 2. Production of Cubic Trialuminide Powder - Master Alloy ..................................... 58 3. Milling Apparatus ................................................................................................... 59 4. Thermal Treatment of Powders ............................................................................... 59 5. Characterization ...................................................................................................... 61 6. Properties Explored ................................................................................................. 79 B. Reactive Mechanical Alloying/Milling (RMA/M) Processing Experiments ................... 82 1. Reactive Mechanical Milling (RMM) of Pre-Alloyed Powders with Fixed Excess Titanium Addition in an Argon Atmosphere ........................................................................................... 83 4 2. Reactive Mechanical Alloying (RMA) of Elemental Powders with Excess Titanium in an Argon Atmosphere .......................................................................................................................... 85 3. Reactive Mechanical Milling (RMM) of Pre-Alloyed Powders with Systematic Increases in Excess Titanium and RMM Time in an Argon Atmosphere ............................................... 87 C. Consolidation of RMM and MM Powders by Cold Isostatic Press (CIP) and Hot Isostatic Press (HIP) Processing ................................................................................................. 88 III. Experimental Results of the Powder Processing by Reactive Mechanical Alloying/Milling................................................................................................................93 A. Reactive Mechanical Milling (RMM) of Pre-Alloyed Powders with Fixed Excess Titanium RMMXh9TiAr Series ................................................................................................. 93 1. As-Milled Powders .................................................................................................. 93 2. X-ray Powder Diffraction Analysis of Annealed Powder ..................................... 113 3. X-ray Powder Diffraction Intensity Analysis ........................................................ 114 4. Macrostructure of Powders ................................................................................... 119 B. Reactive Mechanical Alloying (RMA) of RMA20h8.2TiAr Elemental Powders of Al Cr Ti with Excess Titanium in an Argon Atmosphere .................................................. 133 66 9 25 1. X-ray Power Diffraction Phase Analysis of As-Milled and Annealed Powder ..... 133 2. Phase Volume Fractions ........................................................................................ 135 3. Lattice Parameters ................................................................................................. 137 4. Peak Broadening Analysis of Profile Fit X-ray Diffraction Peaks by the Warren- Averbach Fourier Method...................................................................................................................... 139 C. Results from Reactive Mechanical Milling (RMM) of Pre-Alloyed Powders with Systematic Increases in Excess Titanium in an Argon Atmosphere ..................................... 140 D. Results from Consolidated Materials .............................................................................. 141 1. Characterization .................................................................................................... 141 2. Properties of Consolidated Materials .................................................................... 170 IV. Discussion..............................................................................................................188 A. Nano-Scale Polycrystalline Materials Produced by Severe Deformation .................... 190 1. Structural Characterization of the Nanometer-Scale Powders Produced by the RMA/M Process 191 2. Nano-Scale Grain Boundary Structure .................................................................. 217 B. The Reactive Mechanical Alloying/Milling Process ....................................................... 232 1. Mechanical Alloying Mechanisms ........................................................................ 235 2. Reaction Mechanisms ........................................................................................... 244 C. Nano-Engineering of Composite Materials or Nano-Engineering of Bulk Consolidated Materials ..................................................................................................................................... 255 1. Nanocomposite Powders ....................................................................................... 257 2. Bulk Consolidated Materials ................................................................................. 259 5 D. Consolidated Material....................................................................................................... 269 1. Microstructure ....................................................................................................... 270 2. Strengthening of these Nanocomposites ............................................................... 279 V. Conclusions............................................................................................................284 VI. Potential of this Processing Method ..................................................................... 287 VII. Future Work...........................................................................................................290 VIII. Appendix ................................................................................................................ 291 A. Standard Files .................................................................................................................... 291 1. L1 Chromium-Modified Titanium Trialuminide .................................................. 291 2 2. L1 Chromium-modified Titanium Trialuminide .................................................. 292 2 3. DO Al Ti – (Does not account for any Cr) ......................................................... 293 22 3 4. TiC ........................................................................................................................ 294 5. TiN ........................................................................................................................ 294 6. Ti(C, N) – 65 % C ................................................................................................. 295 7. Ti Al C ................................................................................................................. 296 4 2 2 8. Ti AlC .................................................................................................................. 297 3 2 9. TiH .................................................................................................................. 298 1.924 10. AlCr ..................................................................................................................... 298 2 11. Al O ..................................................................................................................... 299 2 3 B. Mechanical Milling to Produce Fine-Grain Single-Phase Chromium-modified Titanium Trialuminide .............................................................................................................. 301 1. Single-phase Powder Metallurgy Al Cr Ti Alloy ............................................. 301 66 9 25 C. RMMXh9TiAr Annealed Powder XRD Analysis ........................................................... 304 1. Phase Volume Fractions ........................................................................................ 304 2. Lattice Parameter .................................................................................................. 306 D. Phase Analysis of Consolidated Material ........................................................................ 307 1. HIP Process RMM20h8.2TiAir800QH15m .......................................................... 307 2. HIP Process RMM20h8.2TiAr1000QH2h ............................................................ 308 3. HIP Process RMM20h9TiAr1000QH2h ............................................................... 309 4. Consolidated Materials from Systematic Increases in Excess Titanium and RMM Time in an Argon Atmosphere High Carbide Content (Long RMM Time Processing in Argon) ......... 311 E. NGB Calculation for RMA Processing ............................................................................ 317 1. RMA20h8.2TiAr Elemental Starting Powder ....................................................... 317 F. Role of Grain Boundary Structure in Superplastic Deformation ................................. 320 IX. References .................................................................................................................326 6 List of Figures Figure I-1 a) L1 Crystal Structure, b) L1 to DO Crystallographic Relationship, and c) 2 2 22 DO Crystal Structure ..................................................................................................... 16 22 Figure I-2 a) SPEX(cid:165) Mill b) Attritor Mill c) Ball Mill ..................................................... 41 Figure I-3 Fundamental Welding/Fracture Ball to Ball Collision Model [99] ................ 47 Figure I-4 XRD Pattern of Original Experiment After 90 h of SPEX(cid:165) Milling ................ 55 Figure I-5 XRD Patterns of the Original Experiment for 36 h to 90 h MA Times ............ 55 Figure I-6 Integrated Background Intensity Increase with MA Time ............................... 56 Figure II-1 Side-Drifted Powder Diffraction Sample Holder ........................................... 62 Figure II-2 Complex Pattern for 40 h RMM Time Sample RMM40h9TiAr ...................... 64 Figure II-3 Example of Profile Fitting of the RMM40h9TiAr Sample RMM Time 40 h... 66 Figure II-4 Comparison of Profile Fit and Raw Data for the Crystallite Size Fourier Coefficients for Copper <100> ........................................................................................ 75 Figure III-1 XRD Pattern for Initial, 0.5 h, and 1 h RMM Processing Times (RMM0h9TiAr, RMM0.5h9TiAr, RMM1h9TiAr) .............................................................. 94 Figure III-2 XRD Pattern for 5 h, 10 h, 15 h, 20 h, 25 h, 30 h, and 40 h RMM Times..... 95 Figure III-3 RMMXh9TiAr Series all RMM Samples ....................................................... 96 Figure III-4 XRD Phase ID RMM0h9TiAr Initial Mixture ............................................... 98 Figure III-5 XRD Phase ID RMM0.5h9TiAr RMM Time 0.5 h ........................................ 98 Figure III-6 XRD Phase ID RMM1h9TiAr RMM Time 1 h .............................................. 99 Figure III-7 XRD Phase ID RMM5h9TiAr RMM Time 5 h .............................................. 99 Figure III-8 XRD Phase ID RMM10h9TiAr RMM Time 10 h ........................................ 100 Figure III-9 XRD Phase ID RMM15h9TiAr RMM Time 15 h ........................................ 100 Figure III-10 XRD Phase ID RMM20h9TiAr RMM Time 20 h ...................................... 101 Figure III-11 XRD Phase ID RMM25h9TiAr RMM Time 25 h ...................................... 101 Figure III-12 XRD Phase ID RMM30h9TiAr RMM Time 30 h ...................................... 102 Figure III-13 XRD Phase ID RMM40h9TiAr RMM Time 40 h ...................................... 102 Figure III-14 Profile Fit of RMM20h9TiAr RMM Time 20 h ......................................... 103 Figure III-15 Volume Fraction for RMMXh9TiAr Series of RMM Times ...................... 105 Figure III-16 L1 Intermetallic Lattice Parameter ......................................................... 107 2 Figure III-17 RMMXh9TiAr Series Warren-Averbach Crystallite Size Analysis ........... 109 Figure III-18 RMMXh9TiAr Series Warren-Averbach Microstrain Analysis ................ 111 Figure III-19 X-ray Powder Diffraction Pattern Background Increase ......................... 115 7 Figure III-20 RMMXh9TiAr Series Background Intensity Area for As-Milled and Annealed Samples for all RMM Times ............................................................................ 116 Figure III-21 Total Crystalline Diffracted Intensity for the RMMXh9TIAr Series As- milled and Annealed Samples ......................................................................................... 118 Figure III-22 Particle Size Distribution of RMM0.5h9TiAr As-Milled Powder ............. 121 Figure III-23 Particle Size Distribution of RMM25h9TiAr As-Milled Powder .............. 122 Figure III-24 Particle Size Distribution of RMM40h9TiAr As-Milled Powder .............. 122 Figure III-25 Infant Aggolomerate Particle RMM10h9TiAr As-Milled 700X ................ 124 Figure III-26 As-Milled Powder Particle RMM0.5h9TiAr 2kX ...................................... 124 Figure III-27 As-Milled Individual Powder Particles for 10, 25, 40, and 60 h RMM Times (the 10 and 25 h same excess titanium, 40 h 2X, 60 h 3X amount)................................. 125 Figure III-28 Particle Cavity in RMM1h9TiAr As-milled Powder Particle 13kX .......... 126 Figure III-29 Continued Cavity Closure in RMM25h9TiAr As-millled Powder Particle 8kX .................................................................................................................................. 126 Figure III-30 High Magnification Micrograph of Surface Features of As-milled RMM10h9TiAr Powder Particle 15kX ............................................................................ 128 Figure III-31 Surface Smeared Particles Showing Flow Lines in As-milled RMM10h9TiAr Powder Particle 19kX ............................................................................ 128 Figure III-32 Areas of Small Particle Cold Welding and Brittle Fracture Surfaces on As- milled Particle RMM1h9TiAr 1.8kX ............................................................................... 130 Figure III-33 Crack and Fracture Surface on As-milled RMM0.5h9TiAr Powder Particle 6kX .................................................................................................................................. 131 Figure III-34 Cracks and Fractures As-milled Powder Particle of 40 h RMM Time with 16.8 wt. pct. Titanium 4.5kX ........................................................................................... 132 Figure III-35 Diffraction Pattern of RMA20h8.2TiAr As-Milled with Identified Phases134 Figure III-36 Diffraction Pattern of RMA20h8.2TiAr Vacuum Annealed with Identified Phases ............................................................................................................................. 135 Figure III-37 Ternary Titanium Aluminum Chromium Phase Diagram Determined from HIPed Materials at 1200 °C 172 MPa 2 h [16] ............................................................. 137 Figure III-38 As-Milled Systematic Increase in Excess Titanium and RMM Time ........ 140 Figure III-39 Carbon Content Dependence on RMM Time ........................................... 143 Figure III-40 Iron Content Dependence on RMM Time ................................................. 145 Figure III-41 Volume Fraction Dependence of L1 Intermetallic with RMM Time ....... 150 2 8 Figure III-42 Carbon Content Calculated from XRD Volume Fraction Analysis and LECO Elemental Analysis............................................................................................... 152 Figure III-43 Crystallite Size Results from the Scherrer and Warren-Averbach Methods as a Function of RMM Time ........................................................................................... 157 Figure III-44 Microstrain Data in the <111> Direction as a Function of RMM Time .. 158 Figure III-45 TEM Micrograph of Sample 20/1000/MA 50 kX Magnification .............. 159 Figure III-46 TEM Micrograph of Sample 40/1000/RA 60 kX Magnification ............... 160 Figure III-47 TEM Micrograph of Sample 40/1000/RA 80 kX Magnification ............... 161 Figure III-48 TEM Image of Carbide Edge for Sample 40/1000/RA 300 kX ................. 163 Figure III-49 FESEM Micrograph of Sample 20/1000/MA ............................................ 165 Figure III-50 FESEM Micrograph of Sample 20/1000/RA ............................................ 165 Figure III-51 FESEM Micrograph of Sample 40/1000/RA ............................................ 166 Figure III-52 FESEM Micrograph of Sample 60/1000/RA ............................................ 166 Figure III-53 Density of Alloys HIPed at 1000 ºC with Increasing Complex Carbide Volume Fraction ............................................................................................................. 172 Figure III-54 Vickers Hardness as a Function of Carbon Content for Samples Consolidated at 1000 (cid:113)C for 2 h ..................................................................................... 175 Figure III-55 Compression Curves for Cr9 and MM3h Samples ................................... 178 Figure III-56 Compression Curves for RMM Samples Consolidated at 1000ºC ............ 179 Figure III-57 Changes in Strain Hardening Rate as a Function of the Square Root of the Dislocation Density ......................................................................................................... 181 Figure III-58 Engineering Stress-Strain Curve Sample 40/1000/RA at 900 (cid:113)C ............. 182 Figure III-59 Macro Photomicrograph of 900 ºC Compression Sample 20/1000/RA (right) and a Untested Sample (left) with Loading Direction Vertical ........................... 183 Figure III-60 Young's and Shear Moduli Change with Carbon Content ........................ 185 Figure III-61 Poisson's Ratio Change with Carbon Content.......................................... 186 Figure III-62 CTE as a Function of Volume Fraction of Carbide and Therefore Carbon Content ............................................................................................................................ 187 Figure IV-1Comparison of As-Milled Powder to Annealed As-Milled Powder ............. 192 Figure IV-2 Interference Functions W(r) for interatomic distances. (a) Long-range ordered crystalline structure; (b) short-range ordered amorphous structure; (c) random neither long-range nor short-range ordered structure [160]. ........................................ 194 Figure IV-3 Corrected Volume Fraction Data for RMMXh9TiAr As-Milled Powders .. 205 9

Description:
Laitila, Edward Andrew, "Nano-engineering of composite material via reactive mechanical alloying/milling (RMA/M)", Dissertation,. Michigan Table IV-2 Nano-grain Boundary Phase Volume Fraction within the L12 Intermetallic 201 mathematically using an in-house FORTRAN program.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.