ebook img

Music emotion recognition PDF

251 Pages·3.227 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Music emotion recognition

Saunder January24,2011 10:39 book Saunder January24,2011 10:39 book Multimedia Computing, Communication and Intelligence Series Editors: Chang Wen Chen and Shiguo Lian Music Emotion Recognition Yi-Hsuan Yang and Homer H. Chen ISBN: 978-1-4398-5046-6 TV Content Analysis: Techniques and Applications Edited by Yiannis Kompatsiaris, Bernard Merialdo, and Shiguo Lian ISBN: 978-1-4398-5560-7 Saunder January24,2011 10:39 book Saunder January24,2011 10:39 book MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MAT- LAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4398-5046-6 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a pho- tocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Saunder January24,2011 10:39 book Contents Preface.................................................................................................xi Abbreviations....................................................................................xiii 1 Introduction.................................................................................1 1.1 ImportanceofMusicEmotionRecognition......................................1 1.2 RecognizingthePerceivedEmotionofMusic....................................4 1.3 IssuesofMusicEmotionRecognition...............................................6 1.3.1 AmbiguityandGranularityofEmotionDescription............6 1.3.2 HeavyCognitiveLoadofEmotionAnnotation....................7 1.3.3 SubjectivityofEmotionalPerception...................................8 1.3.4 SemanticGapbetweenLow-LevelAudioSignal andHigh-LevelHumanPerception.....................................9 1.4 Summary.........................................................................................12 2 OverviewofEmotionDescriptionandRecognition...............15 2.1 EmotionDescription.......................................................................15 2.1.1 CategoricalApproach........................................................16 2.1.2 DimensionalApproach......................................................18 2.1.3 MusicEmotionVariationDetection.................................20 2.2 EmotionRecognition......................................................................21 2.2.1 CategoricalApproach........................................................22 2.2.1.1 DataCollection.................................................23 2.2.1.2 DataPreprocessing............................................25 2.2.1.3 SubjectiveTest..................................................26 2.2.1.4 FeatureExtraction.............................................28 2.2.1.5 ModelTraining.................................................28 2.2.2 DimensionalApproach......................................................29 2.2.3 MusicEmotionVariationDetection.................................31 2.3 Summary.........................................................................................32 v Saunder January24,2011 10:39 book vi (cid:1) Contents 3 MusicFeatures...........................................................................35 3.1 EnergyFeatures...............................................................................36 3.2 RhythmFeatures.............................................................................37 3.3 TemporalFeatures..........................................................................42 3.4 SpectrumFeatures...........................................................................44 3.5 HarmonyFeatures...........................................................................51 3.6 Summary.........................................................................................54 4 DimensionalMERbyRegression.............................................55 4.1 AdoptingtheDimensionalConceptualization ofEmotion......................................................................................55 4.2 VAPrediction.................................................................................57 4.2.1 WeightedSumofComponentFunctions..........................57 4.2.2 FuzzyApproach.................................................................58 4.2.3 SystemIdentificationApproach(SystemID).....................58 4.3 TheRegressionApproach................................................................59 4.3.1 RegressionTheory.............................................................59 4.3.2 ProblemFormulation........................................................60 4.3.3 RegressionAlgorithms.......................................................60 4.3.3.1 MultipleLinearRegression................................60 4.3.3.2 (cid:1)-SupportVectorRegression.............................61 4.3.3.3 AdaBoostRegressionTree(AdaBoost.RT)........62 4.4 SystemOverview.............................................................................62 4.5 Implementation..............................................................................63 4.5.1 DataCollection.................................................................63 4.5.2 FeatureExtraction.............................................................65 4.5.3 SubjectiveTest...................................................................67 4.5.4 RegressorTraining.............................................................67 4.6 PerformanceEvaluation..................................................................68 4.6.1 ConsistencyEvaluationoftheGroundTruth....................68 4.6.2 DataTransformation.........................................................70 4.6.3 FeatureSelection................................................................71 4.6.4 AccuracyofEmotionRecognition.....................................74 4.6.5 PerformanceEvaluationforMusicEmotion VariationDetection...........................................................77 4.6.6 PerformanceEvaluationforEmotionClassification...........78 4.7 Summary.........................................................................................79 5 Ranking-BasedEmotionAnnotationandModelTraining.....81 5.1 Motivation......................................................................................81 5.2 Ranking-BasedEmotionAnnotation...............................................82 Saunder January24,2011 10:39 book Contents (cid:1) vii 5.3 ComputationalModelforRankingMusic byEmotion.....................................................................................84 5.3.1 Learning-to-Rank..............................................................85 5.3.2 RankingAlgorithms...........................................................85 5.3.2.1 RankSVM.........................................................85 5.3.2.2 ListNet..............................................................85 5.3.2.3 RBF-ListNet......................................................87 5.4 SystemOverview.............................................................................90 5.5 Implementation..............................................................................90 5.5.1 DataCollection.................................................................92 5.5.2 FeatureExtraction.............................................................95 5.6 PerformanceEvaluation..................................................................96 5.6.1 CognitiveLoadofAnnotation...........................................97 5.6.2 AccuracyofEmotionRecognition.....................................98 5.6.2.1 ComparisonofDifferentFeature Representations.................................................99 5.6.2.2 ComparisonofDifferentLearning Algorithms......................................................100 5.6.2.3 SensitivityTest................................................102 5.6.3 SubjectiveEvaluationofthePredictionResult.................104 5.7 Discussion.....................................................................................104 5.8 Summary.......................................................................................105 6 FuzzyClassificationofMusicEmotion..................................107 6.1 Motivation....................................................................................107 6.2 FuzzyClassification.......................................................................108 6.2.1 Fuzzyk-NNClassifier.....................................................108 6.2.2 FuzzyNearest-MeanClassifier.........................................109 6.3 SystemOverview...........................................................................112 6.4 Implementation............................................................................113 6.4.1 DataCollection...............................................................113 6.4.2 FeatureExtractionandFeatureSelection.........................113 6.5 PerformanceEvaluation................................................................114 6.5.1 AccuracyofEmotionClassification..................................114 6.5.2 MusicEmotionVariationDetection................................114 6.6 Summary.......................................................................................117 7 PersonalizedMERandGroupwiseMER.................................119 7.1 Motivation....................................................................................119 7.2 PersonalizedMER.........................................................................121 7.3 GroupwiseMER...........................................................................122 Saunder January24,2011 10:39 book viii (cid:1) Contents 7.4 Implementation............................................................................124 7.4.1 DataCollection...............................................................124 7.4.2 PersonalInformationCollection......................................126 7.4.3 FeatureExtraction...........................................................127 7.5 PerformanceEvaluation................................................................128 7.5.1 PerformanceoftheGeneralMethod................................128 7.5.2 PerformanceofGWMER................................................130 7.5.3 PerformanceofPMER.....................................................130 7.6 Summary.......................................................................................134 8 Two-LayerPersonalization.....................................................135 8.1 ProblemFormulation....................................................................135 8.2 Bag-of-UsersModel......................................................................136 8.3 ResidualModelingandTwo-LayerPersonalizationScheme..........137 8.4 PerformanceEvaluation................................................................139 8.5 Summary.......................................................................................143 9 ProbabilityMusicEmotionDistributionPrediction.............145 9.1 Motivation....................................................................................145 9.2 ProblemFormulation....................................................................146 9.3 TheKDE-BasedApproachtoMusicEmotion DistributionPrediction.................................................................148 9.3.1 GroundTruthCollection................................................148 9.3.2 RegressorTraining...........................................................150 9.3.2.1 ν-SupportVectorRegression...........................151 9.3.2.2 GaussianProcessRegression............................151 9.3.3 RegressorFusion..............................................................153 9.3.3.1 WeightedbyPerformance...............................153 9.3.3.2 Optimization...................................................154 9.3.4 OutputofEmotionDistribution.....................................156 9.4 Implementation............................................................................157 9.4.1 DataCollection...............................................................157 9.4.2 FeatureExtraction...........................................................157 9.5 PerformanceEvaluation................................................................161 9.5.1 ComparisonofDifferentRegressionAlgorithms..............161 9.5.2 ComparisonofDifferentDistribution ModelingMethods..........................................................162 9.5.3 ComparisonofDifferentFeatureRepresentations...........165 9.5.4 EvaluationofRegressorFusion........................................166 9.6 Discussion.....................................................................................167 9.7 Summary.......................................................................................172 Saunder January24,2011 10:39 book Contents (cid:1) ix 10 LyricsAnalysisandItsApplicationtoMER...........................173 10.1 Motivation..................................................................................173 10.2 LyricsFeatureExtraction.............................................................174 10.2.1 Uni-Gram....................................................................175 10.2.2 ProbabilisticLatentSemanticAnalysis(PLSA).............176 10.2.3 Bi-Gram.......................................................................177 10.3 MultimodalMERSystem...........................................................179 10.4 PerformanceEvaluation..............................................................181 10.4.1 ComparisonofMultimodalFusionMethods...............181 10.4.2 PerformanceofPLSAModel........................................183 10.4.3 PerformanceofBi-GramModel...................................184 10.5 Summary.....................................................................................184 11 ChordRecognitionandItsApplicationtoMER.....................187 11.1 ChordRecognition.....................................................................187 11.1.1 BeatTrackingandPCPExtraction...............................188 11.1.2 HiddenMarkovModelandN-GramModel................188 11.1.3 ChordDecoding...........................................................190 11.2 ChordFeatures............................................................................191 11.2.1 LongestCommonChordSubsequence.........................192 11.2.2 ChordHistogram.........................................................192 11.3 SystemOverview.........................................................................193 11.4 PerformanceEvaluation..............................................................193 11.4.1 EvaluationofChordRecognitionSystem.....................193 11.4.2 AccuracyofEmotionClassification..............................194 11.5 Summary.....................................................................................196 12 GenreClassificationandItsApplicationtoMER...................197 12.1 Motivation..................................................................................197 12.2 Two-LayerMusicEmotionClassification...................................198 12.3 PerformanceEvaluation..............................................................199 12.3.1 DataCollection............................................................199 12.3.2 AnalysisoftheCorrelationbetweenGenre andEmotion.................................................................200 12.3.3 EvaluationoftheTwo-LayerEmotion ClassificationScheme...................................................203 12.3.3.1 ComputationalModel................................203 12.3.3.2 EvaluationMeasures...................................203 12.3.3.3 Results........................................................204 12.4 Summary.....................................................................................205

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.