ebook img

Muscle contributions to medial tibiofemoral compartment contact loading following ACL PDF

19 Pages·2017·2.61 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Muscle contributions to medial tibiofemoral compartment contact loading following ACL

RESEARCHARTICLE Muscle contributions to medial tibiofemoral compartment contact loading following ACL reconstruction using semitendinosus and gracilis tendon grafts JasonM.Konrath1☯*,DavidJ.Saxby1☯,BryceA.Killen1☯,ClaudioPizzolato1☯, ChristopherJ.Vertullo1,2☯,RodS.Barrett1☯,DavidG.Lloyd1☯ a1111111111 1 SchoolofAlliedHealthSciencesandMenziesHealthInstituteQueensland,GriffithUniversity,GoldCoast, Queensland,Australia,2 KneeResearchAustralia,GoldCoast,Queensland,Australia a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. a1111111111 *[email protected] a1111111111 Abstract OPENACCESS Background Citation:KonrathJM,SaxbyDJ,KillenBA, PizzolatoC,VertulloCJ,BarrettRS,etal.(2017) Themuscle-tendonpropertiesofthesemitendinosus(ST)andgracilis(GR)aresubstan- Musclecontributionstomedialtibiofemoral tiallyalteredfollowingtendonharvestforthepurposeofanteriorcruciateligamentrecon- compartmentcontactloadingfollowingACL reconstructionusingsemitendinosusandgracilis struction(ACLR).Thisstudyadoptedamusculoskeletalmodellingapproachtodetermine tendongrafts.PLoSONE12(4):e0176016.https:// howthechangestotheSTandGRmuscle-tendonpropertiesaltertheircontributionto doi.org/10.1371/journal.pone.0176016 medialcompartmentcontactloadingwithinthetibiofemoraljointinpostACLRpatients,and Editor:GayleE.Woloschak,Northwestern theextenttowhichothermusclescompensateunderthesameexternalloadingconditions UniversityFeinbergSchoolofMedicine,UNITED duringwalking,runningandsidestepcutting. STATES Received:June10,2016 Materialsandmethods Accepted:April4,2017 Motioncaptureandelectromyography(EMG)datafrom16lowerextremitymuscleswere Published:April19,2017 acquiredduringwalking,runningandcuttingin25participantsthathadundergoneanACLR Copyright:©2017Konrathetal.Thisisanopen usingaquadruple(ST+GR)hamstringauto-graft.AnEMG-drivenmusculoskeletalmodel accessarticledistributedunderthetermsofthe wasusedtoestimatethemedialcompartmentcontactloadsduringthestancephaseof CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and eachgaittask.Anadjustedmodelwasthencreatedbyalteringmuscle-tendonproperties reproductioninanymedium,providedtheoriginal fortheSTandGRtoreflecttheirreportedchangesfollowingACLR.Parametersforthe authorandsourcearecredited. othermusclesinthemodelwerecalibratedtomatchtheexperimentaljointmoments. DataAvailabilityStatement:Allanalyseddatais presentedinthefigures.Allrawdatacanbefound Results inFigshareathttps://dx.doi.org/10.6084/m9. figshare.3426887.v2andDOI:10.6084/m9. Themedialcompartmentcontactloadsforthestandardandadjustedmodelsweresimilar. figshare.3426887. ThecombinedcontributionsofSTandGRtomedialcompartmentcontactloadinthe Funding:Thefollowingstudywasfundedthrough adjustedmodelwerereducedby26%,17%and17%duringwalking,runningandcutting, agrantfromtheNationalHealthandMedical respectively.Thesedeficitswerebalancedbyincreasesinthecontributionmadebythe ResearchCouncil(NHMRC).Thegrantnumber was628850,andtheURLishttps://www.nhmrc. semimembranosusmuscleof33%and22%duringrunningandcutting,respectively. PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 1/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction gov.au/.Thefundershadnoroleinstudydesign, Conclusion datacollectionandanalysis,decisiontopublish,or AlterationstotheSTandGRmuscle-tendonpropertiesinACLRpatientsresultedin preparationofthemanuscript. reducedcontributiontomedialcompartmentcontactloadsduringgaittasks,forwhichthe Competinginterests:Theauthorshavedeclared semimembranosusmusclecancompensate. thatnocompetinginterestsexist. Introduction Thequadruplebundlehamstringgraftusingthesemitendinosus(ST)andgracilis(GR)ten- donshasbecomeanincreasinglycommonorthopaedictechniqueforanteriorcruciateliga- ment(ACL)reconstruction(ACLR).Thegraftpossessesexcellentmaterialstrength[1]and hasminimalimpactonthekneeextensormechanism[2–4].However,followingharvest,the sizeofthedonormusclesaresubstantiallyreduced[5]resultinginkneeflexorandinternal rotationweakness[6–8].Althoughthereissomeevidenceofcompensatoryhypertrophyofthe otherhamstringmuscles[6],thelossofmusclesizeinSTandGRlikelycompromisestheir forceproducingcapability.Thiscouldinturn,haveimplicationsfortibiofemoraljointfunc- tion,stabilityandloading. Duringgait,themusclesthatspanthetibiofemoraljointplayacriticalroleinforwardpro- pulsion,frontalplanetibiofemoralstabilityandcontactloading[9,10].Amuscle’scontribu- tiontomedialcompartmentcontactloadingisstronglyassociatedwithitscapacitytostabilise externalvalgusmoments,whilstamuscle’scontributiontolateralcompartmentloadingis associatedwithitscapacitytostabiliseexternalvarusmoments[10].SincetheSTandGRare commondonormusclesusedforreplacementoftheinjuredACLandhavelargemoment armscapableofstabilisingexternalvalgusloads[11],thelossofSTandGRmusclesizemay reducetheircontributiontobothmedialcompartmentcontactloadingandthestabilityofthe tibiofemoraljoint.Previousstudieshavefoundthatthepeakkneeadductionmomentis relatedtodiseaseseverity[12,13],however,giventhesubstantialcontributionsmadebymus- clestothecontactloadingofthekneesarticularsurfaces[9,10],andtheirmechanicalrolein stabilisingthejointagainstexternalloads,methodsthatestimatekneejointcontactloads shouldincludethecontributionofthesurroundingmuscles. Thereisemergingevidencethatcontactloadingofthetibiofemoraljointislowerthannor- malfollowingACLrupture[14]andsubsequentreconstruction[15]andisassociatedwith futureonsetofkneeosteoarthritis(OA)[15].KneeOAtypicallyaffectsthemedialcompart- ment,withthelossofmedialcartilagebeinganimportantstructuralmarkerofdiseaseseverity andprogression[16,17].Themagnitudeofthetibiofemoraljointcontactforcemaybeinflu- encedbyexternalloadingconditions,kinematics,aswellasanindividualstask-specificmuscle activationpatterns.Whencomparedtohealthycontrols,ACLreconstructedpatientshave beenreportedtowalkwithsmallerkneeflexionanglesandkneeflexionexcursionduringgait [18].Moreover,studiescomparingtibiofemoralmotionandloadingbetweentheACLRsand controlshavereportedboththeinjuredandcontralateralsideshavesignificantdifferences comparedtohealthyintactknees[19].Furthermore,Gardinieretal.[14]investigatedtibiofe- moralcontactforcesinathleteswithacuteACLruptureandfoundthatpatientswalkedwith decreasedjointcontactforceontheirinjuredkneecomparedtotheiruninjuredknee,which persistsafterACLR[15].Howevernopreviousliterature,hasattemptedtoinvestigatethe effectofdonormuscleatrophyontheircontributiontothejointcontactforce.Inordertoiso- latetheeffectsofdifferentdonormuscle-tendonproperties,acomparisonisneededunderthe PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 2/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction sameexternalloadingconditions,kinematicsandunderlyingmuscleactivationpatternsthat pertaintoeachindividual. Directinvivomeasurementofjointcontactforcesisonlypossiblethroughtheuseof instrumentedprostheticimplants.However,duetocostandinvasiveness,directmeasurement isunfeasible.Analternativeapproachiscomputationalneuromusculoskeletal(NMS)models thatprovideanon-invasivemethodtoestimatethetibiofemoraljointcontactforcesthatoccur duringgait.Computationalmethodsmaybebroadlycategorisedaseitheroptimization-based orelectromyography(EMG)drivenmodels.Alimitationofoptimization-basedmodelsisthat theassumptionthatthenervoussystemrecruitsmusclesbasedonaknowncriterion(i.e.mini- mizationofmusclestresses)maynotapplytoindividualswithjointpathologyorneurological impairment[20].EMG-drivenmodelsaddressthisshortcomingbyusingmeasuredmuscle activationpatternsasadditionalmodelinputs[21].Muscleactivationpatternstogetherwith muscle-tendonkinematicsarethenusedasinputstoaHill-typemusclemodeltoderiveesti- matesofmuscle-tendonforcesandmoments,aswellasjointcontactforces.Importantly, EMG-drivenmodelestimatesoftibiofemoralcontactforceshavebeenvalidatedagainstdirect measurementsfrominstrumentedkneeimplants[20,22,23]. Thepurposeofthisstudywastouseaneuromusculoskeletalmodellingapproachtodeter- minetheeffectsofpreviouslyreportedalterationsinthemuscle-tendonpropertiesoftheST andGRinACLR[5,6];ontheircontributionstomedialcompartmentcontactloadingwithin thetibiofemoraljointexperiencedunderthesamemotionandexternalloadingconditions, duringwalking,runningandsidestepcutting.WehypothesisedthattheSTandGRwould contributelesstomedialcompartmentloadingofthetibiofemoraljointfollowingACLR,and thatothernon-donormuscleswouldcompensateforthesereductions.Sincethedonormus- clesareinvolvedinsupportingseveraldegreesoffreedom,itwasenvisagedthatestimating thesetheoreticalcompensationstrategieswouldinformrehabilitationstrategiesinindividuals thathaveundergoneaquadruplebundlehamstringauto-graftACLR. Materialsandmethods Participants Twenty-fiveparticipants(20male,5female,meanage31±6years,meanbodymass84± 13kg)thathadundergoneaquadruplebundlehamstring(ST+GR)auto-graftACLRwere recruited.Inclusioncriteriawere:(i)unilateralACLinjurysustainedwithoutanyconcomitant kneeligamentinjury;(ii)between2–3yearspostaquadrupledST-GRgraft-ACLR;(iii) between18–45yearsofage;(iv)theabilitytocomplywithtestingprotocol.Exclusioncriteria were:(i)complexkneeinjurieswithadditionalligamenttears;(ii)previousorsubsequent ACLinjuryorlowerextremitysurgery.EthicsapprovalwasobtainedthroughHumanRe- searchEthicsCommitteeoftheUniversityofWesternAustralia(ReferenceCode:RA/4/1/ 4150)withallparticipantsprovidingtheirwritteninformedconsentpriortoanytesting. Surgicalprocedure Patientswererecruitedfromtheclinicsoffourlocalorthopaedicsurgeons.Surgeonsfollowed astandardisedprotocolforaquadruplebundlehamstringauto-graft.Followingtourniquet applicationtothethigh,ananteromedialverticalincisionwasmadeoverthepesanserinus. ThesuperiorborderofthepesanserinuswasthenincisedtovisualisetheSTandGRtendons. Thetendonswereleftsecuredtotheirdistalattachmentpointsandanopen-endedtendonhar- vester(Linvatec,LargoFL)wasusedtoreleasethetendonsproximallyfromtheirmuscular attachmentpointsusingacutratherthanapushtechnique[24]toalengthof22cminfemales and24cminmales.Thenaquadrupledgraftwasformedbyfoldingbothtendonsandwound PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 3/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction together.Thefemoraltunnelwascreatedviaatransportaldrillingtechnique,withfemoralfix- ationofthegraftachievedbyaclosedloopEndobutton(Smith&Nephew,MemphisTN)and tibialfixationachievedusingaroundcannulatedinterferencescrew(Smith&Nephew,Mem- phisTN).Followingsurgery,allpatientsfollowedastandardisedearlymobilizationrehabilita- tionprotocol[6]. Experimentalprotocol Participantsinitiallyperformedaseriesofmaximalverticaljumps,isometriccontractions,as wellasisokineticdynamometertrialsinordertoobtainmaximumEMGvaluesforeach instrumentedmuscle.Participantswerethenfamiliarizedwitheachgaittask(walk,runand sidestepcut)andsubsequentlyperformedaminimumofthreesuccessfultrialsofeachgait task.Atrialwasconsideredsuccessfuliftherelevantfootlandedwhollyontheforceplatform andwasperformedatthedesiredspeedsof2.0–2.5m/sforwalkingand4–4.5m/sforrunning andsidestepcutting.Thesidestepcuttingwasperformed,usingthesurgicallegasthepivot leg,toanangleof45˚fromtheapproachdirection. Experimentaldatacollection Motioncapture,forceplateandEMGdatawereconcurrentlyandsynchronouslyacquired duringtheperformanceofeachtask.A10-cameraVICONMXmotionanalysissystem (Vicon,Oxford,UK)wasusedtoacquirethemotionofretro-reflectiveskin-surfacemarkers attachedtotheparticipants,andsampledat200Hz.Retro-reflectiveskin-surfacemarkers wereplacedonprominentanatomicallandmarksinaccordancewiththeUWAmarkerset [25],with3-markerclustersattachedtotheupper-limb,and10-markerclustersusedon lower-limbsegmentstoimproveassessmentofkneemotion[26].Groundreactionforces (GRF)weremeasuredfromtwoforceplates(AdvancedMechanicaltechnologyInc.,Water- town,USA)samplingat1000Hz.EMGsfrom16musclesonthesurgicallimbweresampledat 1000Hzusingwirelesssensors(Zerowire,Aurion,Milan,IT)bipolarAg/AgClsurfaceelec- trodes(Duo-Trode,Myotronics,USA).Themusclesinvestigatedwere:medialhamstring group(semimembranosus(SM)/semitendinosus(ST));lateralhamstringgroup(bicepsfemo- rislonghead(BFLH)andbicepsfemorisshorthead(BFSH));adductorgroup(AG);rectus femoris(RF);vastuslateralis(VL);vastusmedialis(VM);gracilis(GR);tensorfascialatae (TFL);sartorious(SR);gluteusmaximus(GMax);gluteusmedius(GMed);medialgastrocne- mius(MG);lateralgastrocnemius(LG);soleus(SL);tibialisanterior(TA);andperoneals(PR). Experimentaldataprocessing DataprocessingwasperformedusingtheMOtoNMSsoftware[27]inMATLAB(TheMath- works,Mass,USA).MarkertrajectoriesandGRFswerelow-passfilteredusingazero-lag,2nd order,Butterworthfilterwithacut-offfrequencyof10Hzforwalkingand15Hzforrunning andcutting.Static[28]andfunctional[25]taskswereperformedtoidentifyjointcentres. EMGswereband-passfiltered(30–500Hz),fullwaverectifiedandthenlowpassfilteredwith acutofffrequencyof6Hztoyieldlinearenvelopesforeachmuscle[21],andsubsequently normalisedtotheirmaximumvalueidentifiedacrossalldynamictrials,functionaltasksand dynamometertrialstorepresenttheactivationsof34musculotendinousunits(MTU)[29]. Kneejointcentresweredefinedusingmeanhelicalaxes[25],thehipjointcentresweredefined usingHarringtonregression[30],andtheanklejointcentrewasdefinedasthemidpoint betweenmedialandlateralmalleoli[31]. PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 4/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction Thestandardmodel Inordertoisolatetheeffectsofdifferentdonormuscle-tendonpropertiesunderthesame externalloadingconditions,kinematicsandunderlyingmuscleactivationpatterns,wechose tousethesurgicallegwithunadjustedmuscleparametersasthestandardmodel.Thestandard modelwasusedtocomputeestimatesofthetibiofemoralcontactloadsduringthestance phaseofeachtaskassumingnomorbiditytotheSTandGRusingtheEMG-drivenmodeof thesoftwareCEINMS[32].CEINMShasbeendescribedindetailpreviously[32]andsowill onlybedescribedinbriefhere.Themodelconsistedoffourcomponents:ananatomical modelcreatedusingOpenSim[33]thatcontainedtheinsertionpointsandpathsoftheline segmentrepresentationof34musculotendinousunits(MTU),anEMGtoactivationmodel thatestimatedtheactivationoftheMTUsusingasecondorderdiscretenon-linearmodel [21],amodifiedHill-typemusclemodelthatusedMTUactivationandkinematicstoestimate MTUforcesandmoments,andacalibrationphase.EachMTUwasmodelledasacontractile elementinserieswithacomplianttendon[34].Thetendonwasmodelledusinganon-linear functionnormalisedtotendonslacklength(ls)[34].Thecontractileelementmodelconsistsof t genericforce-length,force-velocity,andparallelelasticfunctions,inwhichfinalMTUforce (F ),isdependentoneachMTU’smaximumisometricforce(FMAX),optimalfibrelength MTU m (lo),andpennationangleatoptimalfibrelength(;o). m m CalibrationwasusedtooptimisetheMTUandactivationparametersforeachsubject.Cali- brationconsistedoftwosteps:morphometricandfunctionalscaling[29,32,35,36].Themor- phometricscalingadjustedtheparametersof(lo)and(ls)ofeachMTUtopreservethe m t dimensionlessmusclefibreandtendonoperatingcurveswhilerespectingtheoverallMTU lengthacrossarangeoflower-limbjointangles[35,36].Thefunctionalscaling,partofthe CEINMSframework,adjustedEMG-drivenmodelparameterssuchthattheleastsquareddif- ferencesbetweenthemodelpredictedjointmomentsandtheexperimentallymeasuredjoint momentswereminimised[21,29].Thecalibrationincludedjointmomentsfromhipadduc- tion-abduction(HAA),hipflexion/extension(HFE),kneeflexion/extension(KFE),andankle dorsi/plantarflexion(AFE)[29].Theexperimentaltrialsusedinthecalibrationprocedure includedonewalk,onerunandonecut.Parametersincludedinthefunctionalcalibration were:(i)activationparameters(C1andC2)whichadjusttheimpulseresponseofthesecond orderfilter(ii)anon-linearshapefactor(A)whichaccountsforthenon-linearEMGtoforce relationship[21],(iii)lo,(iv)ls,and(v)strengthcoefficientsfor12groupsofmusclesthatscale m t eachMTUsFMAXwithineachgrouptoaccountfordifferencesinmusclephysiologicalcross m sectionalareabetweenpeople[21,29].The12functionalmusclegroupsweretheuniarticular hipflexors,uniarticularhipextensors,uniarticularhipadductors,biarticularhipadductors, hipabductors,uniarticularkneeflexors,uniarticularkneeextensors,uniarticularankleplantar flexors,uniarticularankledorsiflexors,biarticularquadriceps,biarticularhamstringsand gastrocnemiusmuscles.Aftercalibration,theNMSmodeloperatedasanopen-looppredictive systemforeachofthewalking,runningandcuttingtrialstocalculatemuscleforces,joint momentsandkneejointcontactforcesasafunctionofmuscleactivationandmodelkinemat- ics[32]. Theadjustedmodel AversionofthestandardmodelwithmodificationstotheHill-typemuscle-modelparameters fortheSTandGRwascreatedtorepresentdonormusclemorbidityfollowingahamstring graftACLR[5,6].Musclevolumes(V )andpeakcrosssectionalareas(CSA )fromWilliams m m etal[5]andKonrathetal[6]werechosentorepresentSTandGRmorbidity,becausebothV m andCSA werereported.AlthoughWilliams[5]was6–9monthspost-surgeryandKonrath m PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 5/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction Table1. MorphologicalchangestotheSTandGRfollowingACLR. CSA(cm2) Volume(cm3) Surgical Contralateral Surgical Contralateral ST 8.8±3.6 11.4±3.3 114.8±67.6 214.9±70.4 GR 4.5±1.8 6.3±2.6 69.6±38.8 107.6±44 Crosssectionalarea(CSA)andvolume(mean±standarddeviation)(N=28)pooledfromWilliamsetal.(2004)(n=8)andKonrathetal.(2016)(n=20)for theST/GRoftheSurgicalandContralaterallimb. https://doi.org/10.1371/journal.pone.0176016.t001 [6]was2yearspost-surgery,theirvaluesweresimilar.Therefore,thesemorphologicalchanges werepooledtogetherandusedtoadjusttheSTandGRparameters(Table1).TheCSAofthe STandGRwerereducedinthesurgicallegofACLRpatientsrelativetothecontralateralleg by33%and39%,respectively,andthecorrespondingmusclevolumeswerereducedby47% and35%,respectively(n=28). UsingtheV andCSA changestotheSTandGR,the(lo),(ls)andstrengthcoefficients m m m t wereadjusted.Physiologicalcrosssectionalarea(PCSA )isacommonlyusedmuscleparame- m ter,butwasnotreported,soweassumedPCSA =CSA .Therefore,theCSA ofanMTUis m m m directlyproportionaltothestrengthcoefficient(SC )multipliedby(FMAX),fromwhichwe m m developEq1. CSASurg SCAdj m ¼ m ðEq1Þ CSACon SCNorm m m WhereCSASurgandCSAConrepresenttheaverageCSAofthemusclesofthesurgicallegand contralateralleginACLRpatientsrespectively,whileSCAdjandSCNormrepresentthestrength m m coefficientsfortheadjustedmodelandstandardmodel.Fromthiswedevelopvaluesof(SCAdj) m fortheSTandGR. Volume(V )ofamuscleisrelatedtoitscrosssectionalarea(CSA )multipliedbyoptimal m m musclefibrelength(lo).ThereforeloAdjcanbeapproximated,assuming;o isthesameinthe m m m surgicalandnormalcontralaterallegs,usingEq2 (cid:18) (cid:19) (cid:0) (cid:1) VSurg 1 loAdj ¼ loCon m (cid:16) (cid:17) ðEq2Þ m m VmCon CCSSAASmCmuorng (cid:16) (cid:17) WhereloConrepresentsthecontralateraloptimalfibrelengthrespectively,while VmSurg and (cid:16) (cid:17)m VmCon CSASmurg representtheratiosbetweensurgicalandcontralaterallegsV andCSA respectively. CSACmon m m UsingthenewloAdj,theadjustedtendonslacklengthwascalculatedusingthesameoptimiza- m tionmethoddescribedinthemorphometricscalinginwhichthedimensionlessmusclefibre andtendonoperatingcurveswerepreservedwhilerespectingtheMTUlengthacrossarange oflowerlimbjointangles[36]. Thefunctionalcalibrationwasthenrepeated,however,theadjustedlo (loAdj),adjustedls m m t andadjustedstrengthcoefficientsfortheSTandGRwerenotallowedtochange.Following thiscalibration,newparameterswerecalibratedfortheother32MTUswithinthemodel,as wellastheadjustedparametersfortheSTandGRrepresentingtheirmorbidity.Theopen-loop predictionsystemwasthenruntoobtainMTUforcesandmomentsforeachofthe34MTUs intheadjustedmodel. PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 6/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction Tibiofemoraljointcontactmodel MTUforceestimatesfromthestandardandadjustedmodelwereincorporatedintoatibiofe- moraljointcontactmodel[10,22]toestimatethecontactloadinthemedialcompartment (FMC)(Fig1).Thecontactmodelwasbasedonthreeassumptions:(i)onlyforceswithacom- ponentparalleltothelongaxisofthetibiaorthatgenerateavarus/valgusmomentaboutthe kneejointcontributetoarticularloading,(ii)theseloadsactthroughonlyasinglecontact pointoneachcondyle,separatedbydistance(d ),(iii)ligamentsdonotcontributetoloading IC Fig1.Tibiofemoraljointcontactmodel.Tibio-femoraljointcontactmodel(rightleg)usedtoestimate medialcompartmentloads(FMC).Thepatellaisnotshown.Netmomentsaboutthelateraltibialcontactpoint (MLC þMLC)weredividedbytheintercondylardistance(d ). MTU ext IC https://doi.org/10.1371/journal.pone.0176016.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 7/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction ofthearticularsurfaces.ThenetinternalMTUvarus/valgusmoments(MLC )aboutthelateral MTU contactpointsarefirstcalculatedbysummingtheproductofeachMTUsforce(F )multi- MTU pliedbyitsvarus/valgusmomentarm(rLC )aboutthelateralcondylefornMTUs,usingEq3. MTU P MLC ¼ n F ðiÞrLC ðiÞ ðEq3Þ MTU i¼1 MTU MTU ThedifferencebetweenMLC andtheexternalmomentsaboutthelateraltibialcontact MTU points(MLC)canbeusedwiththeintercondylardistance(d )tocalculatethemedialcondyle ext IC contactforce(FMC),byassumingstaticequilibriumaboutthelateraltibialcontactpointinthe frontalplane(Fig1),usingEq4.Thenetinternalandexternalmomentsaboutthelateralcon- dylewerethenusedtoestablisheachmuscle’scontributiontothetotalmedialcompartment loadexpressedasapercentage. MLC þMLC FMC ¼ MTU ext ðEq4Þ d IC Statisticalanalysis Arepeatedmeasuresgenerallinearmodel(GLM)wasusedtoassesstheeffectofmodel(stan- dardversusadjusted)oneachindividualkneemuscle’saveragecontributionoverstancetothe medialcompartmentloadforeachgaittask.Theeffectofmodelontheoptimalfibrelength, tendonslacklength,strengthcoefficientandshapefactorforeachmusclewasalsotestedusing thesamerepeatedmeasuredGLM.AllstatisticalanalysiswasperformedusingSPSSversion22 (SPSSInc,Chicago,Ill).Significancewasacceptedforp<0.05,buttoaccountformultiple GLMcomparisons,BenjaminiandHochbergcorrectionswereapplied[37]. Results STandGRhadsignificantlyshorteroptimalfibrelengths,longertendonslacklengthsand reducedstrengthcoefficientsintheadjustedcomparedtostandardmodel(Fig2).Forthe Fig2.Muscleparameterchanges.(A)Optimalfibrelength,(B)Tendonslacklength,(C)Shapefactorand (D)Strengthcoefficientforeachkneemuscleinthestandard(white)andadjusted(black)model.Dataare expressedasmean±onestandarddeviation.(*)denotesstatisticalsignificance. https://doi.org/10.1371/journal.pone.0176016.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 8/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction medialnon-donormuscles,SM,MG,VMandSRsignificantlyincreasedtheiroptimalfibre length,theSMandVMsignificantlydecreasedtheirtendonslacklength,whiletheSRsignifi- cantlyincreasedtendonslacklengthintheadjustedmodel.Forthelateralnondonormuscles, RF,VI,VL,BFSHandLGallsignificantlyincreasedoptimalfibrelength,VLandLGdecreased theirtendonslacklength,whiletheBFSHincreaseditstendonslacklengthintheadjusted model. Thestandardandadjustedmodelproducednearidenticalestimatesofthemedialcompart- menttibiofemoraljointcontactloadsaswellastherelativecontributionsoftheinternal (MTUs)andexternalmomentstothemedialcompartmenttibiofemoraljointcontactloadfor eachgaittask(Fig3).Therewerenosignificantdifferencesineitherthepeakoraveragemedial compartmenttibiofemoraljointcontactloadsbetweenthestandardandadjustedmodel.Simi- larly,therewerenosignificantdifferencesbetweentheexternalandinternalcontributionsto themedialcompartmenttibiofemoraljointcontactloadsbetweenthestandardandadjusted model.Medialcompartmentloadswerelowestinwalkingandhighestinrunning.External momentswerethemajorcontributorstothemedialcompartmentjointcontactloadinwalk- ingwhereastheinternalmomentswerethemajorcontributorsduringrunningandcutting (Fig3). ThecombinedcontributionsofSTandGRtomedialcompartmentloadintheadjusted modelwerereducedby26%,17%and17%duringwalking,runningandcutting,andwerepri- marilyoffsetbycorrespondingincreasesintheSMcontributionsof33%and22%during Fig3.Medialcompartmentcontactloadsandrelativecontributions.Medialcompartment(MC)load (Bodyweights),andrelativecontributionofnetinternal(solidlines)andexternalmoments(dashedlines)tothe MCload(%)forstandard(red)andadjusted(blue)modelsfor(A)walking(B)runningand(C)cutting.Shaded regionsindicate±onestandarderror. https://doi.org/10.1371/journal.pone.0176016.g003 PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 9/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction runningandcutting(Fig4)respectively,howevernoincreaseinSMcontributionswere observedduringwalking. Duringwalking,theaveragecontributionofST,GRandVItothemedialcompartment loadthroughoutstanceweresignificantlyreducedintheadjustedversusstandardmodel(Fig 4).Duringrunning,thecontributionofGR,wassignificantlyreducedintheadjustedversus standardmodel,whereasthecontributionofSMwassignificantlyincreased(Fig4).During cutting,thecontributionsofGRandSRweresignificantlyreducedintheadjustedversusstan- dardmodel,whereasthecontributionofSMwassignificantlyincreased(Fig4). Fig4.Musclecontributionstomedialcompartmentcontactloadsaveragedoverstance.Musclecontributionstothetotalmedialcompartmentload averagedoverstancephaseforthestandard(white)andadjusted(black)modelsduring(A)walking,(B)runningand(C)cutting.Errorbarsrepresent±one standarddeviation.(*)denotesstatisticalsignificance. https://doi.org/10.1371/journal.pone.0176016.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 10/19

Description:
that estimated the activation of the MTUs using a second order discrete .. Brown C, Steiner M, Carson E. The use of hamstring tendons for anterior
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.