RESEARCHARTICLE Muscle contributions to medial tibiofemoral compartment contact loading following ACL reconstruction using semitendinosus and gracilis tendon grafts JasonM.Konrath1☯*,DavidJ.Saxby1☯,BryceA.Killen1☯,ClaudioPizzolato1☯, ChristopherJ.Vertullo1,2☯,RodS.Barrett1☯,DavidG.Lloyd1☯ a1111111111 1 SchoolofAlliedHealthSciencesandMenziesHealthInstituteQueensland,GriffithUniversity,GoldCoast, Queensland,Australia,2 KneeResearchAustralia,GoldCoast,Queensland,Australia a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. a1111111111 *[email protected] a1111111111 Abstract OPENACCESS Background Citation:KonrathJM,SaxbyDJ,KillenBA, PizzolatoC,VertulloCJ,BarrettRS,etal.(2017) Themuscle-tendonpropertiesofthesemitendinosus(ST)andgracilis(GR)aresubstan- Musclecontributionstomedialtibiofemoral tiallyalteredfollowingtendonharvestforthepurposeofanteriorcruciateligamentrecon- compartmentcontactloadingfollowingACL reconstructionusingsemitendinosusandgracilis struction(ACLR).Thisstudyadoptedamusculoskeletalmodellingapproachtodetermine tendongrafts.PLoSONE12(4):e0176016.https:// howthechangestotheSTandGRmuscle-tendonpropertiesaltertheircontributionto doi.org/10.1371/journal.pone.0176016 medialcompartmentcontactloadingwithinthetibiofemoraljointinpostACLRpatients,and Editor:GayleE.Woloschak,Northwestern theextenttowhichothermusclescompensateunderthesameexternalloadingconditions UniversityFeinbergSchoolofMedicine,UNITED duringwalking,runningandsidestepcutting. STATES Received:June10,2016 Materialsandmethods Accepted:April4,2017 Motioncaptureandelectromyography(EMG)datafrom16lowerextremitymuscleswere Published:April19,2017 acquiredduringwalking,runningandcuttingin25participantsthathadundergoneanACLR Copyright:©2017Konrathetal.Thisisanopen usingaquadruple(ST+GR)hamstringauto-graft.AnEMG-drivenmusculoskeletalmodel accessarticledistributedunderthetermsofthe wasusedtoestimatethemedialcompartmentcontactloadsduringthestancephaseof CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and eachgaittask.Anadjustedmodelwasthencreatedbyalteringmuscle-tendonproperties reproductioninanymedium,providedtheoriginal fortheSTandGRtoreflecttheirreportedchangesfollowingACLR.Parametersforthe authorandsourcearecredited. othermusclesinthemodelwerecalibratedtomatchtheexperimentaljointmoments. DataAvailabilityStatement:Allanalyseddatais presentedinthefigures.Allrawdatacanbefound Results inFigshareathttps://dx.doi.org/10.6084/m9. figshare.3426887.v2andDOI:10.6084/m9. Themedialcompartmentcontactloadsforthestandardandadjustedmodelsweresimilar. figshare.3426887. ThecombinedcontributionsofSTandGRtomedialcompartmentcontactloadinthe Funding:Thefollowingstudywasfundedthrough adjustedmodelwerereducedby26%,17%and17%duringwalking,runningandcutting, agrantfromtheNationalHealthandMedical respectively.Thesedeficitswerebalancedbyincreasesinthecontributionmadebythe ResearchCouncil(NHMRC).Thegrantnumber was628850,andtheURLishttps://www.nhmrc. semimembranosusmuscleof33%and22%duringrunningandcutting,respectively. PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 1/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction gov.au/.Thefundershadnoroleinstudydesign, Conclusion datacollectionandanalysis,decisiontopublish,or AlterationstotheSTandGRmuscle-tendonpropertiesinACLRpatientsresultedin preparationofthemanuscript. reducedcontributiontomedialcompartmentcontactloadsduringgaittasks,forwhichthe Competinginterests:Theauthorshavedeclared semimembranosusmusclecancompensate. thatnocompetinginterestsexist. Introduction Thequadruplebundlehamstringgraftusingthesemitendinosus(ST)andgracilis(GR)ten- donshasbecomeanincreasinglycommonorthopaedictechniqueforanteriorcruciateliga- ment(ACL)reconstruction(ACLR).Thegraftpossessesexcellentmaterialstrength[1]and hasminimalimpactonthekneeextensormechanism[2–4].However,followingharvest,the sizeofthedonormusclesaresubstantiallyreduced[5]resultinginkneeflexorandinternal rotationweakness[6–8].Althoughthereissomeevidenceofcompensatoryhypertrophyofthe otherhamstringmuscles[6],thelossofmusclesizeinSTandGRlikelycompromisestheir forceproducingcapability.Thiscouldinturn,haveimplicationsfortibiofemoraljointfunc- tion,stabilityandloading. Duringgait,themusclesthatspanthetibiofemoraljointplayacriticalroleinforwardpro- pulsion,frontalplanetibiofemoralstabilityandcontactloading[9,10].Amuscle’scontribu- tiontomedialcompartmentcontactloadingisstronglyassociatedwithitscapacitytostabilise externalvalgusmoments,whilstamuscle’scontributiontolateralcompartmentloadingis associatedwithitscapacitytostabiliseexternalvarusmoments[10].SincetheSTandGRare commondonormusclesusedforreplacementoftheinjuredACLandhavelargemoment armscapableofstabilisingexternalvalgusloads[11],thelossofSTandGRmusclesizemay reducetheircontributiontobothmedialcompartmentcontactloadingandthestabilityofthe tibiofemoraljoint.Previousstudieshavefoundthatthepeakkneeadductionmomentis relatedtodiseaseseverity[12,13],however,giventhesubstantialcontributionsmadebymus- clestothecontactloadingofthekneesarticularsurfaces[9,10],andtheirmechanicalrolein stabilisingthejointagainstexternalloads,methodsthatestimatekneejointcontactloads shouldincludethecontributionofthesurroundingmuscles. Thereisemergingevidencethatcontactloadingofthetibiofemoraljointislowerthannor- malfollowingACLrupture[14]andsubsequentreconstruction[15]andisassociatedwith futureonsetofkneeosteoarthritis(OA)[15].KneeOAtypicallyaffectsthemedialcompart- ment,withthelossofmedialcartilagebeinganimportantstructuralmarkerofdiseaseseverity andprogression[16,17].Themagnitudeofthetibiofemoraljointcontactforcemaybeinflu- encedbyexternalloadingconditions,kinematics,aswellasanindividualstask-specificmuscle activationpatterns.Whencomparedtohealthycontrols,ACLreconstructedpatientshave beenreportedtowalkwithsmallerkneeflexionanglesandkneeflexionexcursionduringgait [18].Moreover,studiescomparingtibiofemoralmotionandloadingbetweentheACLRsand controlshavereportedboththeinjuredandcontralateralsideshavesignificantdifferences comparedtohealthyintactknees[19].Furthermore,Gardinieretal.[14]investigatedtibiofe- moralcontactforcesinathleteswithacuteACLruptureandfoundthatpatientswalkedwith decreasedjointcontactforceontheirinjuredkneecomparedtotheiruninjuredknee,which persistsafterACLR[15].Howevernopreviousliterature,hasattemptedtoinvestigatethe effectofdonormuscleatrophyontheircontributiontothejointcontactforce.Inordertoiso- latetheeffectsofdifferentdonormuscle-tendonproperties,acomparisonisneededunderthe PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 2/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction sameexternalloadingconditions,kinematicsandunderlyingmuscleactivationpatternsthat pertaintoeachindividual. Directinvivomeasurementofjointcontactforcesisonlypossiblethroughtheuseof instrumentedprostheticimplants.However,duetocostandinvasiveness,directmeasurement isunfeasible.Analternativeapproachiscomputationalneuromusculoskeletal(NMS)models thatprovideanon-invasivemethodtoestimatethetibiofemoraljointcontactforcesthatoccur duringgait.Computationalmethodsmaybebroadlycategorisedaseitheroptimization-based orelectromyography(EMG)drivenmodels.Alimitationofoptimization-basedmodelsisthat theassumptionthatthenervoussystemrecruitsmusclesbasedonaknowncriterion(i.e.mini- mizationofmusclestresses)maynotapplytoindividualswithjointpathologyorneurological impairment[20].EMG-drivenmodelsaddressthisshortcomingbyusingmeasuredmuscle activationpatternsasadditionalmodelinputs[21].Muscleactivationpatternstogetherwith muscle-tendonkinematicsarethenusedasinputstoaHill-typemusclemodeltoderiveesti- matesofmuscle-tendonforcesandmoments,aswellasjointcontactforces.Importantly, EMG-drivenmodelestimatesoftibiofemoralcontactforceshavebeenvalidatedagainstdirect measurementsfrominstrumentedkneeimplants[20,22,23]. Thepurposeofthisstudywastouseaneuromusculoskeletalmodellingapproachtodeter- minetheeffectsofpreviouslyreportedalterationsinthemuscle-tendonpropertiesoftheST andGRinACLR[5,6];ontheircontributionstomedialcompartmentcontactloadingwithin thetibiofemoraljointexperiencedunderthesamemotionandexternalloadingconditions, duringwalking,runningandsidestepcutting.WehypothesisedthattheSTandGRwould contributelesstomedialcompartmentloadingofthetibiofemoraljointfollowingACLR,and thatothernon-donormuscleswouldcompensateforthesereductions.Sincethedonormus- clesareinvolvedinsupportingseveraldegreesoffreedom,itwasenvisagedthatestimating thesetheoreticalcompensationstrategieswouldinformrehabilitationstrategiesinindividuals thathaveundergoneaquadruplebundlehamstringauto-graftACLR. Materialsandmethods Participants Twenty-fiveparticipants(20male,5female,meanage31±6years,meanbodymass84± 13kg)thathadundergoneaquadruplebundlehamstring(ST+GR)auto-graftACLRwere recruited.Inclusioncriteriawere:(i)unilateralACLinjurysustainedwithoutanyconcomitant kneeligamentinjury;(ii)between2–3yearspostaquadrupledST-GRgraft-ACLR;(iii) between18–45yearsofage;(iv)theabilitytocomplywithtestingprotocol.Exclusioncriteria were:(i)complexkneeinjurieswithadditionalligamenttears;(ii)previousorsubsequent ACLinjuryorlowerextremitysurgery.EthicsapprovalwasobtainedthroughHumanRe- searchEthicsCommitteeoftheUniversityofWesternAustralia(ReferenceCode:RA/4/1/ 4150)withallparticipantsprovidingtheirwritteninformedconsentpriortoanytesting. Surgicalprocedure Patientswererecruitedfromtheclinicsoffourlocalorthopaedicsurgeons.Surgeonsfollowed astandardisedprotocolforaquadruplebundlehamstringauto-graft.Followingtourniquet applicationtothethigh,ananteromedialverticalincisionwasmadeoverthepesanserinus. ThesuperiorborderofthepesanserinuswasthenincisedtovisualisetheSTandGRtendons. Thetendonswereleftsecuredtotheirdistalattachmentpointsandanopen-endedtendonhar- vester(Linvatec,LargoFL)wasusedtoreleasethetendonsproximallyfromtheirmuscular attachmentpointsusingacutratherthanapushtechnique[24]toalengthof22cminfemales and24cminmales.Thenaquadrupledgraftwasformedbyfoldingbothtendonsandwound PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 3/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction together.Thefemoraltunnelwascreatedviaatransportaldrillingtechnique,withfemoralfix- ationofthegraftachievedbyaclosedloopEndobutton(Smith&Nephew,MemphisTN)and tibialfixationachievedusingaroundcannulatedinterferencescrew(Smith&Nephew,Mem- phisTN).Followingsurgery,allpatientsfollowedastandardisedearlymobilizationrehabilita- tionprotocol[6]. Experimentalprotocol Participantsinitiallyperformedaseriesofmaximalverticaljumps,isometriccontractions,as wellasisokineticdynamometertrialsinordertoobtainmaximumEMGvaluesforeach instrumentedmuscle.Participantswerethenfamiliarizedwitheachgaittask(walk,runand sidestepcut)andsubsequentlyperformedaminimumofthreesuccessfultrialsofeachgait task.Atrialwasconsideredsuccessfuliftherelevantfootlandedwhollyontheforceplatform andwasperformedatthedesiredspeedsof2.0–2.5m/sforwalkingand4–4.5m/sforrunning andsidestepcutting.Thesidestepcuttingwasperformed,usingthesurgicallegasthepivot leg,toanangleof45˚fromtheapproachdirection. Experimentaldatacollection Motioncapture,forceplateandEMGdatawereconcurrentlyandsynchronouslyacquired duringtheperformanceofeachtask.A10-cameraVICONMXmotionanalysissystem (Vicon,Oxford,UK)wasusedtoacquirethemotionofretro-reflectiveskin-surfacemarkers attachedtotheparticipants,andsampledat200Hz.Retro-reflectiveskin-surfacemarkers wereplacedonprominentanatomicallandmarksinaccordancewiththeUWAmarkerset [25],with3-markerclustersattachedtotheupper-limb,and10-markerclustersusedon lower-limbsegmentstoimproveassessmentofkneemotion[26].Groundreactionforces (GRF)weremeasuredfromtwoforceplates(AdvancedMechanicaltechnologyInc.,Water- town,USA)samplingat1000Hz.EMGsfrom16musclesonthesurgicallimbweresampledat 1000Hzusingwirelesssensors(Zerowire,Aurion,Milan,IT)bipolarAg/AgClsurfaceelec- trodes(Duo-Trode,Myotronics,USA).Themusclesinvestigatedwere:medialhamstring group(semimembranosus(SM)/semitendinosus(ST));lateralhamstringgroup(bicepsfemo- rislonghead(BFLH)andbicepsfemorisshorthead(BFSH));adductorgroup(AG);rectus femoris(RF);vastuslateralis(VL);vastusmedialis(VM);gracilis(GR);tensorfascialatae (TFL);sartorious(SR);gluteusmaximus(GMax);gluteusmedius(GMed);medialgastrocne- mius(MG);lateralgastrocnemius(LG);soleus(SL);tibialisanterior(TA);andperoneals(PR). Experimentaldataprocessing DataprocessingwasperformedusingtheMOtoNMSsoftware[27]inMATLAB(TheMath- works,Mass,USA).MarkertrajectoriesandGRFswerelow-passfilteredusingazero-lag,2nd order,Butterworthfilterwithacut-offfrequencyof10Hzforwalkingand15Hzforrunning andcutting.Static[28]andfunctional[25]taskswereperformedtoidentifyjointcentres. EMGswereband-passfiltered(30–500Hz),fullwaverectifiedandthenlowpassfilteredwith acutofffrequencyof6Hztoyieldlinearenvelopesforeachmuscle[21],andsubsequently normalisedtotheirmaximumvalueidentifiedacrossalldynamictrials,functionaltasksand dynamometertrialstorepresenttheactivationsof34musculotendinousunits(MTU)[29]. Kneejointcentresweredefinedusingmeanhelicalaxes[25],thehipjointcentresweredefined usingHarringtonregression[30],andtheanklejointcentrewasdefinedasthemidpoint betweenmedialandlateralmalleoli[31]. PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 4/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction Thestandardmodel Inordertoisolatetheeffectsofdifferentdonormuscle-tendonpropertiesunderthesame externalloadingconditions,kinematicsandunderlyingmuscleactivationpatterns,wechose tousethesurgicallegwithunadjustedmuscleparametersasthestandardmodel.Thestandard modelwasusedtocomputeestimatesofthetibiofemoralcontactloadsduringthestance phaseofeachtaskassumingnomorbiditytotheSTandGRusingtheEMG-drivenmodeof thesoftwareCEINMS[32].CEINMShasbeendescribedindetailpreviously[32]andsowill onlybedescribedinbriefhere.Themodelconsistedoffourcomponents:ananatomical modelcreatedusingOpenSim[33]thatcontainedtheinsertionpointsandpathsoftheline segmentrepresentationof34musculotendinousunits(MTU),anEMGtoactivationmodel thatestimatedtheactivationoftheMTUsusingasecondorderdiscretenon-linearmodel [21],amodifiedHill-typemusclemodelthatusedMTUactivationandkinematicstoestimate MTUforcesandmoments,andacalibrationphase.EachMTUwasmodelledasacontractile elementinserieswithacomplianttendon[34].Thetendonwasmodelledusinganon-linear functionnormalisedtotendonslacklength(ls)[34].Thecontractileelementmodelconsistsof t genericforce-length,force-velocity,andparallelelasticfunctions,inwhichfinalMTUforce (F ),isdependentoneachMTU’smaximumisometricforce(FMAX),optimalfibrelength MTU m (lo),andpennationangleatoptimalfibrelength(;o). m m CalibrationwasusedtooptimisetheMTUandactivationparametersforeachsubject.Cali- brationconsistedoftwosteps:morphometricandfunctionalscaling[29,32,35,36].Themor- phometricscalingadjustedtheparametersof(lo)and(ls)ofeachMTUtopreservethe m t dimensionlessmusclefibreandtendonoperatingcurveswhilerespectingtheoverallMTU lengthacrossarangeoflower-limbjointangles[35,36].Thefunctionalscaling,partofthe CEINMSframework,adjustedEMG-drivenmodelparameterssuchthattheleastsquareddif- ferencesbetweenthemodelpredictedjointmomentsandtheexperimentallymeasuredjoint momentswereminimised[21,29].Thecalibrationincludedjointmomentsfromhipadduc- tion-abduction(HAA),hipflexion/extension(HFE),kneeflexion/extension(KFE),andankle dorsi/plantarflexion(AFE)[29].Theexperimentaltrialsusedinthecalibrationprocedure includedonewalk,onerunandonecut.Parametersincludedinthefunctionalcalibration were:(i)activationparameters(C1andC2)whichadjusttheimpulseresponseofthesecond orderfilter(ii)anon-linearshapefactor(A)whichaccountsforthenon-linearEMGtoforce relationship[21],(iii)lo,(iv)ls,and(v)strengthcoefficientsfor12groupsofmusclesthatscale m t eachMTUsFMAXwithineachgrouptoaccountfordifferencesinmusclephysiologicalcross m sectionalareabetweenpeople[21,29].The12functionalmusclegroupsweretheuniarticular hipflexors,uniarticularhipextensors,uniarticularhipadductors,biarticularhipadductors, hipabductors,uniarticularkneeflexors,uniarticularkneeextensors,uniarticularankleplantar flexors,uniarticularankledorsiflexors,biarticularquadriceps,biarticularhamstringsand gastrocnemiusmuscles.Aftercalibration,theNMSmodeloperatedasanopen-looppredictive systemforeachofthewalking,runningandcuttingtrialstocalculatemuscleforces,joint momentsandkneejointcontactforcesasafunctionofmuscleactivationandmodelkinemat- ics[32]. Theadjustedmodel AversionofthestandardmodelwithmodificationstotheHill-typemuscle-modelparameters fortheSTandGRwascreatedtorepresentdonormusclemorbidityfollowingahamstring graftACLR[5,6].Musclevolumes(V )andpeakcrosssectionalareas(CSA )fromWilliams m m etal[5]andKonrathetal[6]werechosentorepresentSTandGRmorbidity,becausebothV m andCSA werereported.AlthoughWilliams[5]was6–9monthspost-surgeryandKonrath m PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 5/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction Table1. MorphologicalchangestotheSTandGRfollowingACLR. CSA(cm2) Volume(cm3) Surgical Contralateral Surgical Contralateral ST 8.8±3.6 11.4±3.3 114.8±67.6 214.9±70.4 GR 4.5±1.8 6.3±2.6 69.6±38.8 107.6±44 Crosssectionalarea(CSA)andvolume(mean±standarddeviation)(N=28)pooledfromWilliamsetal.(2004)(n=8)andKonrathetal.(2016)(n=20)for theST/GRoftheSurgicalandContralaterallimb. https://doi.org/10.1371/journal.pone.0176016.t001 [6]was2yearspost-surgery,theirvaluesweresimilar.Therefore,thesemorphologicalchanges werepooledtogetherandusedtoadjusttheSTandGRparameters(Table1).TheCSAofthe STandGRwerereducedinthesurgicallegofACLRpatientsrelativetothecontralateralleg by33%and39%,respectively,andthecorrespondingmusclevolumeswerereducedby47% and35%,respectively(n=28). UsingtheV andCSA changestotheSTandGR,the(lo),(ls)andstrengthcoefficients m m m t wereadjusted.Physiologicalcrosssectionalarea(PCSA )isacommonlyusedmuscleparame- m ter,butwasnotreported,soweassumedPCSA =CSA .Therefore,theCSA ofanMTUis m m m directlyproportionaltothestrengthcoefficient(SC )multipliedby(FMAX),fromwhichwe m m developEq1. CSASurg SCAdj m ¼ m ðEq1Þ CSACon SCNorm m m WhereCSASurgandCSAConrepresenttheaverageCSAofthemusclesofthesurgicallegand contralateralleginACLRpatientsrespectively,whileSCAdjandSCNormrepresentthestrength m m coefficientsfortheadjustedmodelandstandardmodel.Fromthiswedevelopvaluesof(SCAdj) m fortheSTandGR. Volume(V )ofamuscleisrelatedtoitscrosssectionalarea(CSA )multipliedbyoptimal m m musclefibrelength(lo).ThereforeloAdjcanbeapproximated,assuming;o isthesameinthe m m m surgicalandnormalcontralaterallegs,usingEq2 (cid:18) (cid:19) (cid:0) (cid:1) VSurg 1 loAdj ¼ loCon m (cid:16) (cid:17) ðEq2Þ m m VmCon CCSSAASmCmuorng (cid:16) (cid:17) WhereloConrepresentsthecontralateraloptimalfibrelengthrespectively,while VmSurg and (cid:16) (cid:17)m VmCon CSASmurg representtheratiosbetweensurgicalandcontralaterallegsV andCSA respectively. CSACmon m m UsingthenewloAdj,theadjustedtendonslacklengthwascalculatedusingthesameoptimiza- m tionmethoddescribedinthemorphometricscalinginwhichthedimensionlessmusclefibre andtendonoperatingcurveswerepreservedwhilerespectingtheMTUlengthacrossarange oflowerlimbjointangles[36]. Thefunctionalcalibrationwasthenrepeated,however,theadjustedlo (loAdj),adjustedls m m t andadjustedstrengthcoefficientsfortheSTandGRwerenotallowedtochange.Following thiscalibration,newparameterswerecalibratedfortheother32MTUswithinthemodel,as wellastheadjustedparametersfortheSTandGRrepresentingtheirmorbidity.Theopen-loop predictionsystemwasthenruntoobtainMTUforcesandmomentsforeachofthe34MTUs intheadjustedmodel. PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 6/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction Tibiofemoraljointcontactmodel MTUforceestimatesfromthestandardandadjustedmodelwereincorporatedintoatibiofe- moraljointcontactmodel[10,22]toestimatethecontactloadinthemedialcompartment (FMC)(Fig1).Thecontactmodelwasbasedonthreeassumptions:(i)onlyforceswithacom- ponentparalleltothelongaxisofthetibiaorthatgenerateavarus/valgusmomentaboutthe kneejointcontributetoarticularloading,(ii)theseloadsactthroughonlyasinglecontact pointoneachcondyle,separatedbydistance(d ),(iii)ligamentsdonotcontributetoloading IC Fig1.Tibiofemoraljointcontactmodel.Tibio-femoraljointcontactmodel(rightleg)usedtoestimate medialcompartmentloads(FMC).Thepatellaisnotshown.Netmomentsaboutthelateraltibialcontactpoint (MLC þMLC)weredividedbytheintercondylardistance(d ). MTU ext IC https://doi.org/10.1371/journal.pone.0176016.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 7/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction ofthearticularsurfaces.ThenetinternalMTUvarus/valgusmoments(MLC )aboutthelateral MTU contactpointsarefirstcalculatedbysummingtheproductofeachMTUsforce(F )multi- MTU pliedbyitsvarus/valgusmomentarm(rLC )aboutthelateralcondylefornMTUs,usingEq3. MTU P MLC ¼ n F ðiÞrLC ðiÞ ðEq3Þ MTU i¼1 MTU MTU ThedifferencebetweenMLC andtheexternalmomentsaboutthelateraltibialcontact MTU points(MLC)canbeusedwiththeintercondylardistance(d )tocalculatethemedialcondyle ext IC contactforce(FMC),byassumingstaticequilibriumaboutthelateraltibialcontactpointinthe frontalplane(Fig1),usingEq4.Thenetinternalandexternalmomentsaboutthelateralcon- dylewerethenusedtoestablisheachmuscle’scontributiontothetotalmedialcompartment loadexpressedasapercentage. MLC þMLC FMC ¼ MTU ext ðEq4Þ d IC Statisticalanalysis Arepeatedmeasuresgenerallinearmodel(GLM)wasusedtoassesstheeffectofmodel(stan- dardversusadjusted)oneachindividualkneemuscle’saveragecontributionoverstancetothe medialcompartmentloadforeachgaittask.Theeffectofmodelontheoptimalfibrelength, tendonslacklength,strengthcoefficientandshapefactorforeachmusclewasalsotestedusing thesamerepeatedmeasuredGLM.AllstatisticalanalysiswasperformedusingSPSSversion22 (SPSSInc,Chicago,Ill).Significancewasacceptedforp<0.05,buttoaccountformultiple GLMcomparisons,BenjaminiandHochbergcorrectionswereapplied[37]. Results STandGRhadsignificantlyshorteroptimalfibrelengths,longertendonslacklengthsand reducedstrengthcoefficientsintheadjustedcomparedtostandardmodel(Fig2).Forthe Fig2.Muscleparameterchanges.(A)Optimalfibrelength,(B)Tendonslacklength,(C)Shapefactorand (D)Strengthcoefficientforeachkneemuscleinthestandard(white)andadjusted(black)model.Dataare expressedasmean±onestandarddeviation.(*)denotesstatisticalsignificance. https://doi.org/10.1371/journal.pone.0176016.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 8/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction medialnon-donormuscles,SM,MG,VMandSRsignificantlyincreasedtheiroptimalfibre length,theSMandVMsignificantlydecreasedtheirtendonslacklength,whiletheSRsignifi- cantlyincreasedtendonslacklengthintheadjustedmodel.Forthelateralnondonormuscles, RF,VI,VL,BFSHandLGallsignificantlyincreasedoptimalfibrelength,VLandLGdecreased theirtendonslacklength,whiletheBFSHincreaseditstendonslacklengthintheadjusted model. Thestandardandadjustedmodelproducednearidenticalestimatesofthemedialcompart- menttibiofemoraljointcontactloadsaswellastherelativecontributionsoftheinternal (MTUs)andexternalmomentstothemedialcompartmenttibiofemoraljointcontactloadfor eachgaittask(Fig3).Therewerenosignificantdifferencesineitherthepeakoraveragemedial compartmenttibiofemoraljointcontactloadsbetweenthestandardandadjustedmodel.Simi- larly,therewerenosignificantdifferencesbetweentheexternalandinternalcontributionsto themedialcompartmenttibiofemoraljointcontactloadsbetweenthestandardandadjusted model.Medialcompartmentloadswerelowestinwalkingandhighestinrunning.External momentswerethemajorcontributorstothemedialcompartmentjointcontactloadinwalk- ingwhereastheinternalmomentswerethemajorcontributorsduringrunningandcutting (Fig3). ThecombinedcontributionsofSTandGRtomedialcompartmentloadintheadjusted modelwerereducedby26%,17%and17%duringwalking,runningandcutting,andwerepri- marilyoffsetbycorrespondingincreasesintheSMcontributionsof33%and22%during Fig3.Medialcompartmentcontactloadsandrelativecontributions.Medialcompartment(MC)load (Bodyweights),andrelativecontributionofnetinternal(solidlines)andexternalmoments(dashedlines)tothe MCload(%)forstandard(red)andadjusted(blue)modelsfor(A)walking(B)runningand(C)cutting.Shaded regionsindicate±onestandarderror. https://doi.org/10.1371/journal.pone.0176016.g003 PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 9/19 MedialtibiofemoralcompartmentcontactloadingfollowingACLreconstruction runningandcutting(Fig4)respectively,howevernoincreaseinSMcontributionswere observedduringwalking. Duringwalking,theaveragecontributionofST,GRandVItothemedialcompartment loadthroughoutstanceweresignificantlyreducedintheadjustedversusstandardmodel(Fig 4).Duringrunning,thecontributionofGR,wassignificantlyreducedintheadjustedversus standardmodel,whereasthecontributionofSMwassignificantlyincreased(Fig4).During cutting,thecontributionsofGRandSRweresignificantlyreducedintheadjustedversusstan- dardmodel,whereasthecontributionofSMwassignificantlyincreased(Fig4). Fig4.Musclecontributionstomedialcompartmentcontactloadsaveragedoverstance.Musclecontributionstothetotalmedialcompartmentload averagedoverstancephaseforthestandard(white)andadjusted(black)modelsduring(A)walking,(B)runningand(C)cutting.Errorbarsrepresent±one standarddeviation.(*)denotesstatisticalsignificance. https://doi.org/10.1371/journal.pone.0176016.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0176016 April19,2017 10/19
Description: