ebook img

Multiple Live Videos Delivery in Underprovisioned Networks PDF

144 Pages·2017·7.01 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiple Live Videos Delivery in Underprovisioned Networks

Multiple Live Videos Delivery in Underprovisioned Networks Jiayi Liu To cite this version: Jiayi Liu. Multiple Live Videos Delivery in Underprovisioned Networks. Networking and Internet Architecture [cs.NI]. Télécom Bretagne, Université de Rennes 1, 2013. English. ￿tel-00978741￿ HAL Id: tel-00978741 https://tel.archives-ouvertes.fr/tel-00978741 Submitted on 14 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre : 2013telb0284 SSoouuss llee sscceeaauu ddee ll’’’’’’’’UUnniivveerrssiittéé eeuurrooppééeennnnee ddee BBrreettaaggnnee Télécom Bretagne En habilitation conjointe avec l’Université de Rennes 1 Ecole Doctorale – MATISSE Multiple Live Videos Delivery in Underprovisioned Networks Thèse de Doctorat Mention : Informatique Présentée par Jiayi Liu Département : Informatique Laboratoire : IRISA Directeur de thèse : Antoine Beugnard Soutenue le 4 Novembre 2013 Jury : M. Laurent Schumacher, Professeur, University Namur (Rapporteur) M. David Coudert, Professeur, INRIA (Rapporteur) M. Antoine Beugnard, Professeur, Télécom Bretagne (Directeur de thèse) M. Guillaume Pierre, Professeur, Université de Rennes I / IRISA (Président) M. Cyrcil Concolato, Maître de conférences, Télécom ParisTech (Examinateur) M. Juan Pedro Munoz Gea, Maître de conférences, Universidad Cartagena (Examinateur) M. Gwendal Simon, Maître de conférences, Télécom Bretagne (Encadrant) i Acknowledgement During this thesis, I have been able to work in both Brest and Rennes, where I met many brilliant scientists, colleagues and hearty friends. The work presented in this thesis received contributions from many of them in many ways. I appreciate this chance to express my most sincere thanks to them, who helped me along the way. First of all, I am heartily thankful to my supervisor Gwendal Simon. This thesis would not have been possible without his help. Many thanks to his patient guidance, encouragement, useful critiques and support from the initial to the (cid:28)nal level which enabled me to develop an understanding of the subject. Also, I am very grateful for his warm concern for my life in France, especially his enlightened policy on asking for leaves, which enabled me to spend several Chinese New Year in China, as well as stay bedside my mother throughout her illness. I would like to express my sincere appreciation to Professor Antoine Beugnard, the director of this thesis, for his advice and supervision. I would like to also thank Annie Gravey for her constant support, and Jean-Marie Bonnin for taking me in the RSM Department in Rennes. I would like to also thanks the committee members for their e(cid:27)ort on making this dissertation (cid:28)nished. Thanks them for accepting the invitation and spending their precious time on improving this thesis. My sincere appreciation to all my colleagues in our research group: Yaning Liu, Jimmy Leblet, Fen Zhou, Eliya Buyukkaya, YiPing Chen, Zhe Li, Xu Zhang, Wei You, and Karine Pires. I will never forget the pleasant days we spend together: the insightful discussions and the agreeable co(cid:27)ee break chats. Moreover, thanks Qiao Wang for her internship work. I would like to show my gratitude to my coworkers. Their willingness to give their time so generously has been very much appreciated. First of all, I would like to thank the researchers from the CDN project: Raouf Hamzaoui and Shakeel Ahmad from De Montfort University. My very great appreciation to Professor Raouf Hamzaoui, for his valuable and constructive suggestions during the collaboration. Then, many thanks to professor Catherine Rosenberg and Hanan Shpungin from University of Waterloo, GØraldine Texier from TØlØcom Bretagne, the collaboration with them is pleasant and fruitful. My grateful thanks are also extended to all members of both Computer Science DepartmentandNetworkSecurityandMultimediaDepartmentofTØlØcomBretagne. Thanks Armelle Lannuzel and Anais Renaud for the organization of conference trips. I am also very much indebted to all my friends in Brest and Rennes. Thanks their warm companionship during these years. Finally, I owe my deepest gratitude to my family. I am indebted to my boyfriend Chen Wang. When I feel frustrated, his warm encouragement always buoyed me up. Thanks to his company in both practical and spiritual life, the six years life in France becomes more easier and full of good remembrance. I am indebted to my mother Ailing Jia, a strong-minded, generous and a(cid:27)ectionate single-mother. It is not easy for her to bring me up, and even support my study abroad. Although I was brought up in a single-parent family, I lacked for nothing for she tried all her best in providing me with good living conditions and giving me her entire love. She is the greatest ii mother in my heart. iii Abstract With the proliferation of new categories of IP-enabled devices (such as smartphones, tablets, etc.), nowadays, Internet users can ubiquitously access the online video ser- vices. This promotes new types of services (for example, the user-generated live video broadcasting), aswellasnewstreamingtechniques(suchasrate-adaptivestreaming). Asaresult, scientistshaveobservedaformidablegrowthofInternettra(cid:30)cdominated by the videos. A consequent challenge is the bandwidth availability problem(cid:22)a de- livery network can be insu(cid:30)ciently provisioned under the heavy transmission burden imposed by the huge volume of video tra(cid:30)c. Such underprovisioning problem is more severe for live videos due to its real-time requirement. In this thesis, we focus on bandwidth e(cid:30)cient video delivery solutions for live streaming in underprovisioned video delivery networks. More speci(cid:28)cally, we target to capture the aforementioned trends to (cid:28)nd solutions for: (1) user-generated live streaming, and (2) rate-adaptive live streaming. We (cid:28)nally realized the following contributions: First of all, we built an multioverlay peer-to-peer (P2P) video sharing system which allows ordinary Internet users to broadcast their own live videos. Typically, suchasystemconsistsofmultipleindependentP2Plivevideostreamingsystems, and facestheproblemof(cid:28)ndingasuitableallocationofpeeruploadbandwidth. Sofar,no e(cid:30)cient solution has been proposed for the important case when the overall system is underprovisioned, that is, when peers do not have enough upload bandwidth to ensure a di(cid:27)usion of videos at full quality. We designed various objective functions for this upload bandwidth allocation problem and showed how optimal solutions can be e(cid:30)ciently computed. Simulation results demonstrated that our solutions improve on existing algorithms in terms of video quality. Then, we studied the problem of delivering live rate-adaptive streams in the con- tent delivery network (CDN). For live streaming in underprovisioned CDN delivery network, the goal is to maximize the throughput of the network. Previous theoretical models that deal with streaming capacity problems do not capture the emerging real- ityraisedbyrate-adaptivestreaming. Thus, weidenti(cid:28)edanewdiscretized streaming model, which is more suitable for multiple live video channels in modern CDNs. For thismodelweformulatedageneraloptimizationproblemthroughIntegerLinearPro- gramming (ILP) and showed that it is NP-complete. Further, we presented a fast, easy to implement, and near-optimal algorithm with approved approximation ratios for a speci(cid:28)c scenario. This work is the (cid:28)rst step towards streaming multiple live rate-adaptive videos in CDN and provides a fundamental theoretical basis for deeper investigation. Last, wefurtherextendedthediscretizedstreamingmodelintoanuser-centricone which maximizes the overall satisfaction of an user population. The performance of this user-centric discretized streaming model is approved through a set of toy-CDN simulations. Further, we presented a practical system, which e(cid:30)ciently utilizes CDN infrastructure to deliver live video streams to viewers in dynamic and large-scale CDNs. The bene(cid:28)ts of our approaches on reducing the CDN infrastructure capacity is validated through a set of realistic trace-driven large-scale simulations. All in one, this thesis explores bandwidth e(cid:30)cient live video delivery solutions iv in underprovisioned delivery network for multiple streaming technologies. The aim is to maximally utilize the bandwidth of relay nodes (peers in P2P and forwarding equipments in CDN) to achieve an optimization goal. Keywords: LiveStreaming,P2P,Multioverlay,CDN,rate-adaptivestreaming,DASH, Underprovisioned System. v Contents Acknowledgement i Abstract iii Contents vii List of Figures x List of Tables xi RØsumØ xiii 1 Introduction 1 1.1 Status of Online Live Video Streaming . . . . . . . . . . . . . . . . . . 1 1.2 Motivations and Challenges . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 BandwidthconstraintforP2Puser-generatedlivevideosharing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Bandwidth constraint for live rate adaptive streaming over CDN 5 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 A Multioverlay Peer-to-Peer Live Video Sharing System . . . . 6 1.3.2 Discretized streaming model for delivering live rate adaptive videos over CDN . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 A user-centric live rate adaptive streaming system . . . . . . . 7 1.4 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Online Live Video Streaming 11 2.1 Live video streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Peer-to-Peer Live Video Streaming . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Overall Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Tree-based P2P Systems . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Mesh-based P2P Systems . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Multioverlay P2P Systems . . . . . . . . . . . . . . . . . . . . . 17 2.3 Live Video Streaming over CDN . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 CDN: Overall Perspective . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 CDN Architecture for Live Streaming . . . . . . . . . . . . . . 21 2.3.3 Dynamic Adaptive Streaming over HTTP (DASH) . . . . . . . 23 vi CONTENTS 2.3.4 Live DASH over CDN . . . . . . . . . . . . . . . . . . . . . . . 25 3 Multioverlay P2P Video Sharing: Resource Allocation in Under- Provisioned System 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.1 Multioverlay P2P Live Video Sharing System . . . . . . . . . . 29 3.1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Minimizing Under-provisioning: Bipartite Network Flow . . . . . . . . 33 3.4 Cost Function Driven Bandwidth Allocation Strategies . . . . . . . . . 35 3.4.1 Minimum-cost Maximum-(cid:29)ow Problem . . . . . . . . . . . . . . 35 3.4.2 Strategy I: Prioritize Overlay Diversity . . . . . . . . . . . . . . 35 3.4.3 Strategy II: Prioritize Overlay Popularity . . . . . . . . . . . . 36 3.4.4 Strategy III: Prioritize Fee-Paying Sources . . . . . . . . . . . . 37 3.4.5 Strategy IV: Prioritize User Preference . . . . . . . . . . . . . . 37 3.4.6 Practical Optimization . . . . . . . . . . . . . . . . . . . . . . . 38 3.5 Fair Bandwidth Allocation Strategy . . . . . . . . . . . . . . . . . . . 38 3.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 38 3.5.2 Dual Decomposition Solution . . . . . . . . . . . . . . . . . . . 39 3.5.3 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 40 3.6 Implementation and Practical Details . . . . . . . . . . . . . . . . . . . 41 3.6.1 Overall Architecture and Peer Dynamics . . . . . . . . . . . . . 41 3.6.2 Peer-Server Communication Overhead . . . . . . . . . . . . . . 42 3.6.3 Algorithm Computation Time . . . . . . . . . . . . . . . . . . . 42 3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.7.1 Simulator Platform . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.7.2 Simulation Setting . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.7.3 Static Scenario Simulation . . . . . . . . . . . . . . . . . . . . . 47 3.7.4 Dynamic Scenario Simulation . . . . . . . . . . . . . . . . . . . 51 3.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 Discretized Streaming Model for Live Rate Adaptive Streaming 57 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 System Model and Problem De(cid:28)nition . . . . . . . . . . . . . . . . . . 58 4.2.1 Live Rate Adaptive Streaming in CDN . . . . . . . . . . . . . . 58 4.2.2 Problem De(cid:28)nition . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 Problem Formulation and Problem Complexity . . . . . . . . . . . . . 60 4.3.1 Integer Linear Programming formulation . . . . . . . . . . . . . 60 4.3.2 NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 A Practical Scenario and Algorithm . . . . . . . . . . . . . . . . . . . 64 4.4.1 Practical Bundle Delivery in CDN . . . . . . . . . . . . . . . . 64 4.4.2 The Bundle-Delivery Algorithm . . . . . . . . . . . . . . . . 64 4.4.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 71 CONTENTS vii 5 A User-centric Live Rate Adaptive Streaming CDN System 73 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 User-centric Discretized Streaming Model . . . . . . . . . . . . . . . . 75 5.2.1 User satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.2 Live video streaming in a CDN . . . . . . . . . . . . . . . . . . 77 5.3 Formulation of the Capacity Problem . . . . . . . . . . . . . . . . . . . 78 5.3.1 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 Integer Linear Program Formulation . . . . . . . . . . . . . . . 79 5.4 Proof-of-Concept for User-centric Discretized Streaming . . . . . . . . 81 5.5 A Practical System: scadoosh . . . . . . . . . . . . . . . . . . . . . . 83 5.5.1 Type Speci(cid:28)ed User Assignment . . . . . . . . . . . . . . . . . 85 5.5.2 Utility-based Content Placement . . . . . . . . . . . . . . . . . 87 5.5.3 Utility driven delivery trees construction . . . . . . . . . . . . . 89 5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.6.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6 Conclusion 99 6.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Limitations and Perspectives . . . . . . . . . . . . . . . . . . . . . . . 101 Bibliography 114 Publications 115 Glossary 117

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.