ebook img

Multiphase Signatures of Active Galactic Nucleus Feedback in Abell 2597 PDF

18 Pages·2017·10.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiphase Signatures of Active Galactic Nucleus Feedback in Abell 2597

UUnniivveerrssiittyy ooff KKeennttuucckkyy UUKKnnoowwlleeddggee Physics and Astronomy Faculty Publications Physics and Astronomy 2012 MMuullttiipphhaassee SSiiggnnaattuurreess ooff AAccttiivvee GGaallaaccttiicc NNuucclleeuuss FFeeeeddbbaacckk iinn AAbbeellll 22559977 G. R. Tremblay European Southern Observatory, Germany C. P. O'Dea Rochester Institute of Technology S. A. Baum Chester F. Carlson Center for Imaging Science T. E. Clarke Naval Research Laboratory C. L. Sarazin University of Virginia SFoeello nwe xtth pisa agned f oard additdioitnioanl awl oaruktsh aotr:s h ttps://uknowledge.uky.edu/physastron_facpub Part of the Astrophysics and Astronomy Commons, and the Physics Commons RRiigghhtt cclliicckk ttoo ooppeenn aa ffeeeeddbbaacckk ffoorrmm iinn aa nneeww ttaabb ttoo lleett uuss kknnooww hhooww tthhiiss ddooccuummeenntt bbeenneefifittss yyoouu.. RReeppoossiittoorryy CCiittaattiioonn Tremblay, G. R.; O'Dea, C. P.; Baum, S. A.; Clarke, T. E.; Sarazin, C. L.; Bregman, J. N.; Combes, F.; Donahue, M.; Edge, A. C.; Fabian, A. C.; Ferland, Gary J.; McNamara, B. R.; Mittal, R.; Oonk, J. B. R.; Quillen, A. C.; Russell, H. R.; Sanders, J. S.; Salomé, P.; Voit, G. M.; Wilman, R. J.; and Wise, M. W., "Multiphase Signatures of Active Galactic Nucleus Feedback in Abell 2597" (2012). Physics and Astronomy Faculty Publications. 33. https://uknowledge.uky.edu/physastron_facpub/33 This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. MMuullttiipphhaassee SSiiggnnaattuurreess ooff AAccttiivvee GGaallaaccttiicc NNuucclleeuuss FFeeeeddbbaacckk iinn AAbbeellll 22559977 Digital Object Identifier (DOI) http://dx.doi.org/10.1111/j.1365-2966.2012.21281.x NNootteess//CCiittaattiioonn IInnffoorrmmaattiioonn Published in Monthly Notices of the Royal Astronomical Society, v. 424, issue 2, p. 1026-1041. This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. The copyright holder has granted the permission for posting the article here. AAuutthhoorrss G. R. Tremblay, C. P. O'Dea, S. A. Baum, T. E. Clarke, C. L. Sarazin, J. N. Bregman, F. Combes, M. Donahue, A. C. Edge, A. C. Fabian, Gary J. Ferland, B. R. McNamara, R. Mittal, J. B. R. Oonk, A. C. Quillen, H. R. Russell, J. S. Sanders, P. Salomé, G. M. Voit, R. J. Wilman, and M. W. Wise This article is available at UKnowledge: https://uknowledge.uky.edu/physastron_facpub/33 Mon.Not.R.Astron.Soc.424,1026–1041(2012) doi:10.1111/j.1365-2966.2012.21281.x Multiphase signatures of active galactic nucleus feedback in Abell 2597 (cid:2) G. R. Tremblay,1,2,3 C. P. O’Dea,2,4 S. A. Baum,3,5 T. E. Clarke,6 C. L. Sarazin,7 J. N. Bregman,8 F. Combes,9 M. Donahue,10 A. C. Edge,11 A. C. Fabian,12 G. J. Ferland,13 B. R. McNamara,4,14 R. Mittal,3 J. B. R. Oonk,15 A. C. Quillen,16 H. R. Russell,14 J. S. Sanders,12 P. Salome´,9 G. M. Voit,10 R. J. Wilman11 and M. W. Wise15 1EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748GarchingbeiMu¨nchen,Germany 2DepartmentofPhysics,RochesterInstituteofTechnology,84LombMemorialDrive,Rochester,NY14623,USA 3ChesterF.CarlsonCenterforImagingScience,54LombMemorialDrive,Rochester,NY14623,USA D 4Harvard–SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA o w 5RadcliffeInstituteforAdvancedStudy,10GardenStreet,Cambridge,MA02138,USA n 6NavalResearchLaboratoryRemoteSensingDivision,Code72134555OverlookAvenueSW,Washington,DC20375,USA loa d 7DepartmentofAstronomy,UniversityofVirginia,POBox400325,Charlottesville,VA22904-4325,USA ed 8DepartmentofAstronomy,UniversityofMichigan,AnnArbor,MI48109,USA fro 9ObservatoiredeParis,LERMA,CNRS,61Av.del’Observatoire,75014Paris,France m h 10PhysicsandAstronomyDepartment,MichiganStateUniversity,EastLansing,MI48824-2320,USA ttp 11DepartmentofPhysics,DurhamUniversity,DurhamDH13LE ://m 12InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA n 13DepartmentofPhysics,UniversityofKentucky,Lexington,KY40506,USA ras 14PhysicsandAstronomyDepartment,WaterlooUniversity,200UniversityAvenueW.,Waterloo,ONN2L,2G1,Canada .ox 15ASTRON,NetherlandsInstituteforRadioAstronomy,POBox2,7990AADwingeloo,theNetherlands ford 16DepartmentofPhysicsandAstronomy,UniversityofRochester,Rochester,NY14627,USA jo u rn a ls .o Accepted2012May9.Received2012May8;inoriginalform2012March2 rg a/ t U n iv e ABSTRACT rs We present new Chandra X-ray observations of the brightest cluster galaxy (BCG) in the ity o cool-coreclusterAbell2597(z=0.0821).Thedatarevealanextensivekpc-scaleX-raycavity f K e networkaswellasa15-kpcfilamentofsoft-excessgasexhibitingstrongspatialcorrelationwith ntu c archivalVeryLargeArrayradiodata.Inadditiontoseveralpossiblescenarios,multiwavelength ky evidencemaysuggestthatthefilamentisassociatedwithmultiphase(103–107K)gasthathas Lib beenentrainedanddredged-upbythepropagatingradiosource.Stemmingfromafullspectral rarie analysis,wealsopresentprofilesand2DspectralmapsofmodelledX-raytemperature,entropy, s o n pressureandmetalabundance.Themapsrevealanarcofhotgaswhichinprojectionborders A u theinneredgeofalargeX-raycavity.Althoughlimitedbystrongcaveats,wesuggestthatthe gu s hotarcmaybe(a)duetoacompressedrimofcoldgaspushedoutwardsbytheradiobubble t 2 0 or(b)morphologicallyandenergeticallyconsistentwithcavity-drivenactivegalacticnucleus , 2 0 1 heating models invoked to quench cooling flows, in which the enthalpy of a buoyant X-ray 4 cavityislocallythermalizedasambientgasrushestorefillitswake.Ifconfirmed,thiswould bethefirstobservationalevidenceforthismodel. Key words: galaxies: active – galaxies: clusters: general – galaxies: clusters: individual: Abell2597–galaxies:clusters:intraclustermedium–galaxies:starformation. ronmentsthroughwhichtheypropagate.Observationsofbrightest 1 INTRODUCTION clustergalaxies(BCGs)incoolcore(CC)clusterssuggestthatthe Althoughanimportantcomponentinmodelsofgalaxyevolution, outflowing plasma can drive sound waves and subsonically exca- little is known about the mechanical interaction between active vatecavitiesintheambientX-raybrightintraclustermedium(ICM; galactic nucleus (AGN) outflows and the ambient gaseous envi- e.g.Sarazin1986),actingaslowerlimitcalorimeterstotheAGN kineticenergyinput(Bo¨hringeretal.1993;Fabianetal.2000,2006; McNamara et al. 2000, 2001; Blanton et al. 2001; Churazov (cid:2) E-mail:[email protected] etal.2001;Bˆırzanetal.2004;Formanetal.2005,2007;Nulsen (cid:2)C 2012TheAuthors MonthlyNoticesoftheRoyalAstronomicalSociety(cid:2)C 2012RAS AGNfeedbackinAbell2597 1027 etal.2005).Alongwithawealthofsupportingcircumstantialevi- (2012).HerewedescribethetwonewChandraX-rayObservatory dence,theseobservationsmotivatetheradio-modeAGNfeedback AXAFCCDImagingSpectrometer(ACIS)exposuresoftheA2597 paradigm, invoked at late epochs to inhibit catastrophic cooling BCG, taken in 2006 May for a total of 52.8 and 60.9 ks, respec- flows that should otherwise drive extreme star formation rates in tively(ObsIDs6934and7329,PI:Clarke).Bothobservationswere the BCG (e.g. reviews by Fabian 1994, 2012; Peterson & Fabian takeninVFAINT,full-frame,timedexposuremode.Anolder40-ks 2006;McNamara&Nulsen2007,2012).However,whilethecavi- Chandraexposure(ObsID922,PI:McNamara)wastakenin2000 tiesdemonstratetheprofoundimpactofjetsonambienthotX-ray JulyandoriginallypublishedbyMcNamaraetal.(2001)(hereafter haloes,thephysicscouplingAGNmechanicalenergytoICMstruc- M01)inastudyoftheA2597ghostcavity(whichwewilldiscuss tureandentropyremainpoorlyunderstood. later).ThisobservationwastakeninFAINT,full-frame,timedex- Moreover,modelsinvokingradio-modefeedbacktoquenchcool- posure mode. As noted in M01, ObsID 922 was badly impacted ingflowsignaturessuchasstarformationmustbereconciledwith byflaringevents,yieldingonly∼18ksofdatasuitableforspectral observational evidence that, in several systems, the propagating analysis.Wehavereprocessedalloftheseobservationsinauniform radio source triggers rather than inhibits star formation. Hubble manner,asdescribedbelow. SpaceTelescope(HST)Far-Ultraviolet(FUV)observationsofsev- Thethreeobservations(ObsIDs922,6934and7329)wereob- eral CC BCGs reveal knots of young stars preferentially aligned tained as primary data products from the Chandra Data Archive. alongtheedgesofradiolobes–siteswheretheoutflowingplasma The data were reduced in version 4.2 of the CIAO environment Do collideswiththeobservedambientcoldgas(e.g.Abell1795;Abell (Chandra Interactive Analysis of Observations; Fruscione et al. wn 2597; O’Dea et al. 2004; Tremblay et al. 2012, and references 2006) using version 4.3.1 of the calibration data base (CALDB). loa d therein).Manystudieshavesuggestedthatthejetpropagationfront The CIAO script chandra_repro was run for each observation to ed canshockandcompressthesecoldclouds,inducingrapid,short- automate the creation of new level=1 and level=2 event files fro m durationstarbursts(e.g.Elmegreen&Elmegreen1978;Voit1988; by applying charge transfer inefficiency (CTI) correction, time- h DeYoung1989;McNamara&O’Connell1993;O’Deaetal.2004; dependent gain adjustment, Pulse Height Amplitude (PHA) and ttp Batcheldor et al. 2007; Holt, Tadhunter & Morganti 2008; Holt pixelrandomization,andstandardgradeandstatusfiltering.Only ://m n etal.2011).Massloadingofthejetcansimilarlyinducedecelera- thoseeventswithASCAgrades0,2,3,4and6areusedinthisanaly- ra s tionandbendingoftheradiosourceinregionsofhighgasdensity, sis.Backgroundlightcurvesforeachexposurewereobtainedfrom .o x whichcouldexplainthecompact,steepspectrumandbentFanaroff theACIS-S1back-illuminatedchip.TheCIAOscriptdeflarewas ford &Riley(1974)classI(FRI)morphologiescommonlyassociated usedtocreategoodtimeinterval(GTI)temporalmasksrejecting jo u withradiosourcesembeddedindenseenvironments(e.g.O’Dea& countsassociatedwiththreesigmaflaresoverthemeanquiescent rn Baum1986;Baumetal.1988). backgroundrate.Thisfilteringstrategyretainedonly∼18(outof40) als .o Progress in understanding these issues rests on a better grasp ksofflare-freedataforthe922observation.ObsIDs6934and7329 rg of the complex ways in which AGN outflows interact not only werenotsignificantlyimpactedbyflaringevents,andnomorethan at U/ withtheirhotgaseousenvironments,butwiththecolderinterstellar 2ksforeitherobservationwererejected.Thecombinedeffectiveex- n iv medium(ISM)phasesaswell.InthispaperwepresentnewChan- posuretimeis150ks,andthecombinedflare-freeexposuretimeis e rs draX-rayObservatoryobservations,totalling150ksincombined 128ks. ity ethffeeccteivnetreexopfotshuereCtCimcel,uosftetrheAbberilglh2t5e9st7c(lzus=ter0g.0a8la2x1y).(PBrCevGi)ouast usiAng0s.t5a–n7dkaerdVdemnceorpgyytfielctehrniwqausesa.pTphlieefdltuoxtihmeargedeusccerdipetxwpaosstuhreens of Ke n works have shown that the source exhibits extensive, multiphase used to create exposure maps for each data set. The observations tu c (103–107K)signaturesofAGN/ISMinteractions,includingX-ray were reprojected to a common World Coordinate System (WCS) ky L cavities,evidenceforgasentrainmentandjet-triggeredstarforma- tangent point, combined, and divided by their similarly repro- ib tion(e.g.Sarazinetal.1995;Tayloretal.1999;O’Deaetal.2004; jected and combined exposure maps, creating exposure-corrected ra Clarkeetal.2005;Oonketal.2010).InSection2wedescribethe 0.5–7keV mosaics suitable for spatial analysis. Soft (0.5–1keV), ries o observations,datareductionandourprocedureforthecreationof medium(1–2keV)andhard(2–7keV)combinedimageswerealso n A 2DspectralmapsfromthenewX-raydata.InSection3wepresent createdusingthisstrategy.Adaptivelysmoothedandunsharpmask u g u spatial and spectral results, including general X-ray morphology, imagesweremadeusingtechniquesdiscussedinSection3.Merged s t 2 radio/X-rayspatialcorrelations,surfacebrightnessandspectralpa- data are not suitable for spectral analysis, so X-ray spectra were 0 rameter radial profiles and a hardness analysis. In Section 4 we extracted from each individual observation and analysed simulta- , 20 1 present the 2D spectral maps of modelled X-ray gas properties neously in XSPEC version 12.5 (Arnaud 1996). We have also cre- 4 includingtemperature,entropy,pressureandmetalabundance.In ated 2D spatial+spectral maps of projected X-ray temperature, Sections5and6wediscussthemainresultsofthispaper,namely pressure and metal abundance, following a procedure described the‘coldfilament’and‘hotarc’features(respectively).Throughout below. thiswork,weadoptH = 71h−1kms−1Mpc−1,(cid:3) = 0.27and 0 71 M (cid:3)(cid:4)=0.73.Inthiscosmology,1arcseccorrespondsto∼1.5kpcat theredshiftoftheA2597BCG(z=0.0821).Thisredshiftcorre- 2.1 CreationofX-rayspectralmaps spondstoanangularsizedistanceofD ≈ 315Mpcandalumi- A nositydistanceofD ≈369Mpc.AdiscussionofthesenewX-ray UsingthespatiallyresolvedChandraspectroscopy,wehavecreated L observationsinthecontextofICMcoolingandAGNheatingcan 2DmapsofprojectedX-raytemperature,pseudo-entropy,pseudo- befoundinacompanionpaper(Tremblayetal.2012). pressureandmetalabundance.Webrieflydescribehowthesemaps werecreatedbelow,butreferthereadertoSection3formoredetails one.g.howspectraareextractedandmodelled. 2 OBSERVATIONS AND DATA REDUCTION Tomakethespectralmaps,theexposure-correctedmosaicwas Asummaryofallnewandarchivaldataused(directlyorreferen- cleanedofcontaminatingpointsources,croppedtoincludeonlythe tially) in this analysis can be found in table 1 of Tremblay et al. inner 80×80arcsec2 (120×120kpc2),thenpassedthroughthe (cid:2)C 2012TheAuthors,MNRAS424,1026–1041 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:2)C 2012RAS 1028 G.R.Tremblayetal. CONTBIN1adaptivebinningalgorithmdescribedbySanders(2006). 3 X-RAY SPATIAL AND SPECTRAL RESULTS Thecodelocatesthebrightestpixelintheimageandcreatesaspa- tialbinarounditbyincludingallneighbouringpixelsoflikesurface 3.1 GeneralX-raymorphology brightnessuntilauser-definedsignal-to-noiseratio(S/N)threshold ismet,anditerativelymovesoutwardsfollowingthesameproce- Previous X-ray studies have been published for A2597 using the dure.FortheX-raytemperatureandemissionmeasuremaps(used 40-ks(18ksofgoodtime)Chandraobservation922(e.g.M01and in the pseudo-entropy and pressure maps), we set this threshold Clarkeetal.2005,hereafterC05).M01wasthefirsttoreporton tobeS/N=30,or(cid:2)302 =900counts.Forthemetalabundance thewesternandnorth-easternghostcavitiesinferredfromlocalized map, we set it to S/N = 70. The shape of each spatial bin was depressions in the X-ray surface brightness. Later work by C05 constrainedsothatitslengthcouldbeatmosttwotimesitswidth extendedthisanalysistoincludeastudybetweenX-raymorphol- (toprevent‘stripe’-likebinswhichwouldsampleanunreasonably ogy and Very Large Array (VLA) radio observations at 8.4GHz, largespatialcross-sectionofmultiphaseclustergas).Theresultisa 1.3GHzand330MHz.ThatworkdescribedanX-ray‘tunnel’ap- spatiallybinnedimagethatfollowsthesurfacebrightnessdistribu- parent in their unsharp mask of the 922 data. Roughly 22arcsec tion.Inadditiontothecontourbinnedimage,thealgorithmcreates (33kpc) in projected length and 1.5arcsec (2.3kpc) in projected abinmapwhichweusedwithJ.Sanders’make_region_files radius,thetunnelappearedtoconnectthepeakoftheX-raysurface codetocreateCIAO-compatibleregionfilesforeachofthe277in- brightness distribution, cospatial with the radio and BCG optical Do dividualspatialbinscreatedforourdatabytheCONTBINcode.The core,withtheM01westerncavity.Itwasnotapparentwhetherthis wn individuallevel=2eventfilesforChandraObsIDs6934and7329 was a discrete feature, or was part of a larger cavity encompass- loa d (whichweresimilarlycleanedofpointsources)werethenspatially ingboththetunnelandtheM01cavity.Extended330-MHzradio ed reprojectedtoidenticalpositionsusingthemergedimageasaco- emissionwasobservedtobecospatialwithbothfeatures. fro m ordinatereference.Theregionfilescreatedfromthebinmapwere In Fig. 1 we present the new, combined 0.5–7keV data. The h then ported to each of the two event files. A script was used to left-handpanelshowstheexposure-correctedmosaicwithnospa- ttp iterativelyextractthesourcespectrum,backgroundfileandcreate tialbinningorsmoothingapplied.Theright-handpanelshowsthe ://m n associatedresponsefiles(ARF/RMF)foreachofthe277spatialre- mergeddataadaptivelysmoothedwithavariablewidthGaussian ra s gionsoneachofthetwoeventfiles.Thecorrespondingsourceand kernelwhosesizeself-adjuststomatchthelocaleventdensity.Black .o x background spectra from like regions on the two exposures were surfacebrightnesscontoursareoverlaidtomakeindividualfeatures fo then added together using the mathpha tool in CIAO, and average easiertoview.Theinnermostcontourmarksafluxof4.6×10−7 rdjo responses were created using addarf and addrmf from FTOOLS. photonss−1cm−2pixel−1,andmovesoutwardswithadecrementof urn The summed spectra were then regrouped to 15 count bins, and 2.0×10−8photonss−1cm−2pixel−1.Bothpanelssharethesame als theBACKSCALandEXPOSUREheaderkeywordswereupdated. scale,withafieldofview(FOV)of∼60×60arcsec2,correspond- .org Tsahmisepcrhoicped(wurheicishoisnltyruveiafbolreOifbsthIDesex6p9o3s4uraensdw7e3r2e9t)a.kTehneo1n8t-hkes iRnAgt=o9203h×259m019ks.p7c52.aTndheDFeOc.V=is−c1e2n◦t0re7d(cid:6)2o6n(cid:6).(cid:6)9th(eJ2X00-r0a)y.Acesnwtriotihdaaltl at Un/ (goodtime)922datasetwasthereforenotusedinthispartofthe figurespresentedinthispaper,northisupandeastistotheleft. ive rs analysis. TheX-raysurfacebrightnessdistributionishighlyanisotropic, ity MeAwne–XKSPaEaCstrva1–2L.i5ed(aAhrlnthauerdm1al9p9l6a)smTaCmLosdcerlisp(tcawllaesdMusEedKAtoLfiint aanxdiseoxfttehnedBedCGalostnegllaarpisoospithioontesan(wglheic(hPAli)etohnatamPAat∼ch−es4t5h◦e,wmhaejorer of Ke n XSPEC),absorbedtoaccountforGalacticattenuation(i.e.WABS× norththrougheast,orcounterclockwise,isthepositivedirection). tu c MEKAL). These models were fitted simultaneously to the two ThespatialanisotropyoftheX-rayemissionseemstobeconfined ky L grouped,background-subtractedspectraextractedfromeachofthe tothescaleoftheBCG,astheX-rayisophotesassumeasmoother ib matchedregionsofthetwoexposures.Foreachfit,thesourcered- ellipticalshapeintheoutermostregions. ra fsrhoizftewnatostfihxeeGdatolazct=ic0v.a0l8u2e1o,ft2h.e4h8y×dr1o0g2e0nccmo−lu2m(Mn0d1en),saitnydNthHewgaass sioAnsissedeinstirnibFuitge.d1i,nthaebinuntteerrmflyo-sltik2e0sahrcaspeec,owfitthhet0w.o5–h7igkheVsuermfaicse- ries on A temperaturekT,abundanceZandnormalizationN (effectively brightnessknots∼1arcsecWand∼3arcsecSEoftheX-raycen- u MEK g u theemissionmeasure)wereallowedtovary.Thefitswereruniter- troid. The knot 1arcsec west is approximately cospatial with the s ativelytominimizetheχ2statistic.Thebest-fittingparameterskT, radiocore.AfractionoftheX-rayemissioninthisknotstemsfrom t 20 Z,NMEKandtheircorrespondingupperandlower90percentcon- theweakpointsourceassociatedwiththeAGN.Twosharpdeficits , 201 fidenceintervalswerewrittentoindividualfileslinkedtotheircor- ofX-rayemission∼2arcsecNEand∼2arcsecSWdefinetheinner 4 respondingspatialbin.J.Sanders’scriptpaint_output_images ridgesofthe‘butterflywings’.Oneofthemostprominentfeatures wasthenusedtorescalethespatialbinsintheCONTBINoutputim- visibleinFig.1isa10-arcsec(∼15kpcinprojection)filamentex- agebytheirassociatedbest-fittingparameters,producingprojected tendingalongaPA≈55◦,roughlyperpendiculartothemajoraxis temperature,emissionmeasureandabundancemaps.Aprojected ofthebutterflyfeatureandaligned(inprojection)alongtheminor pseudo-pressure map was then created by multiplying the square axis of the BCG stellar isophotes. The western edge of the M01 rootoftheemissionmeasuremap(whichisproportionaltobutnot ghostcavityisfaintlyseen∼18arcsecwestand5arcsecsouthof exactly the density, which requires an uncertain volume assump- thecentre. tion)bythetemperature(kT)map.Themapswerethenadaptively In Fig. 2 we show the same 0.5–7keV data processed in smoothedusingthesamevariable-widthGaussiankernelsizesas two ways: (1) a residual image made by subtracting a 30-arcsec usedforthesmoothedsurfacebrightnessmapshownintheright- Gaussian smoothed image from the adaptively smoothed image handpanelofFig.1. shownintheright-handpanelofFig.1,and(2)amoreconventional unsharpmaskmadebysubtractinga20-arcsecGaussiansmoothed imagefroma5-arcsec(non-adaptive)Gaussiansmoothedversion. Thesubtracteddataarethendividedbythesumofthetwoimages. 1http://www-xray.ast.cam.ac.uk/papers/contbin/ Regions of X-ray surface brightness excess over the subtracted (cid:2)C 2012TheAuthors,MNRAS424,1026–1041 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:2)C 2012RAS AGNfeedbackinAbell2597 1029 D o w n lo a d e d fro m h ttp ://m n Figure1. Leftpanel:exposure-corrected(fluxed)0.5–7keVimageofthethreemergedChandraexposures922,6934and7329.NoGaussiansmoothing ra s or pixel binning has been applied. Right panel: 0.5–7keV X-ray surface brightness map, smoothed with an adaptive Gaussian kernel. Black contours .o x havebeenoverlaidtobettershowthespatiallyanisotropicnatureoftheemission.Theinnermostcontourmarksafluxof4.6×10−7 photonss−1 cm−2 fo pixel−1,andthecontoursmoveoutwardswithafluxdecrementof2.0×10−8 photonss−1 cm−2 pixel−1.BothpanelsshareanidenticalFOV,centredat rdjo RA=23h25m19s.75andDec.=−12◦07(cid:6)26(cid:6).(cid:6)9(J2000). urn a ls .o rg a/ t U n iv e rs ity o f K e n tu c k y L ib ra rie s o n A u g u s t 2 0 , 2 0 1 4 Figure2. Twounsharpmaskimagesofthemerged150-ksChandra0.5–7keVobservation.Theleft-handpanelwasmadeviasubtractionofa20-arcsec Gaussiansmoothedversionoftheimagefromtheadaptivelysmoothedversion.Theversionintherightpanelwasmadebysubtractingthesame20-arcsec Gaussiansmoothedversionoftheimagefroma5-arcsecGaussiansmoothedversion,thendividingbythesumofthetwoimages.Inthechosencolour scheme,regionsoftheX-raysurfacebrightnessexcessoverthesubtractedsmoothedcountsappearinred/orange,whiledeficitsappearinblack.330-MHz VLAcontourshavebeenoverlaidingreen,whilethe1.3-GHzradiocontoursareplottedinblue,andthe8.4-GHzradiocontoursappearinblack.Allofthe radiodataarefromClarkeetal.(2005).Notehowtheextended330-MHzemissioncorrespondsinbothlinearextentandprojectedPAwiththeapparentX-ray cavityconsistingoffeatures(1)and(2),aslabelledintherightpanel.Notealsothatthenorth-easthookofthe1.3-GHzemission(blue)isalignedwiththe ‘bottom’ofthe15-kpcX-rayfilament.Themajormorphologicalfeatureswhichwillbethesubjectoffurtherspatialandspectralanalysishavebeenlabelled 1–6intherightpanel.Althoughwelabelthemseparately,wedonotmeantoimplythatfeatures1and2arenecessarilydiscrete.Rather,feature1islabelled separatelytoenableaclearercomparisonwiththeM01‘ghostcavity’.Features1and2maywellbeonelargercavity.Theringfeaturesseenintheleft-hand panelareartefactsfromsubtractingimageswithdifferentsmoothinglengths. (cid:2)C 2012TheAuthors,MNRAS424,1026–1041 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:2)C 2012RAS 1030 G.R.Tremblayetal. smoothbackgroundappearinwhite,whiledeficits(cavities)appear 1999;O’Deaetal.2004;Oonketal.2010).The1.3-GHzemission in black. Both panels are on the same scale, with identical 50 × extendedalongthebottomhalfofthe15-kpcX-rayfilament(feature 50arcsec2(75×75kpc2)FOVs.Weoverlayradiocontoursonthe 5inFig.2)maybeevidenceforthedredge-upoflowertemperature, left-hand panel, which we will discuss later. These two edge en- high-densitykeVgasbythepropagatingradiojet.Oonketal.(2010) hancement methods (particularly method 1) are inherently noisy, reportedhigh-velocity(andvelocitydispersion)streamsofH and 2 andintroduceartefactsthatcomplicatequantitativemorphological HII coincident with the southern edge of the northern 8.4-GHz analysis. Significance of the observed features must therefore be radiolobeandapproximatelyalignedwiththeprojectedVLBAjet estimated from the unprocessed data. We show these mostly as axis. The jet may therefore be dynamically interacting with both viewingaidsforthemajormorphologicalfeatures. thehotandwarm/coldphasesoftheISM.Wewillinvestigatethese By comparing unsmoothed counts in like-sized regions at the possibilitiesinSection5. samecluster-centricradius,wefindsixdiscretefeaturesassociated with (cid:2)10σ deficits or excesses relative to the local mean. These 3.3 X-raysurfacebrightnessprofile featuresarelabelled1–6intheright-handpanelofFig.2.Thispaper discusses feature 5, the ‘cold filament’, while energetics analysis In Fig. 3 we plot azimuthally summed X-ray surface brightness of the X-ray cavities is discussed in a companion paper on AGN againstprojectedradius,usingfluxesextractedfromnarrowconcen- heatingandICMcoolinginA2597(Tremblayetal.2012). tricannulispanning∼5–100kpc.Wefitbothsingularandadditive Do w two-componentLorentz1D‘beta’modelswithavaryingpowerlaw n lo 3.2 RadioandX-rayspatialcorrelations (beta1dinCIAOSHERPA)tothedata,whereinthesurfacebrightness ad (cid:7) atprojectedradiusrvariesas ed I3tin3v0ethl-yMe).lHeWfzte-VhdaLonAdnoprtaasndheioolwocfothnFetiogiun.rn2sewrimneoboslvtaec1rk.l3a,-ybGl8Hu.e4z-aGannHddz3g,3r1e0.e3-nM-G(HHrezzscpaoenncd-- (cid:7)XX(r)=(cid:7)X(0)(cid:2)1+(cid:3)rr (cid:4)2(cid:5)(−3β+1/2). (1) http from tourstoallowthehigherfrequencycontourstobeclearlyvisible. 0 ://m AsnotedbyM01andC05,thenorthernandsouthernlobesofthe Here, (cid:7)X(0) is the central X-ray surface brightness and r0 is the nra 8.4-GHzsource(blackcontours)areboundedtothewestandeast coreradius.Typically,theICMingalaxyclustersiswellfittedby s.o bydeficitsofX-rayemissionassociatedwithfeatures6and2,re- models with β ≈ 0.6 (Sarazin 1986). Our results are consistent xfo spectively.Beyondthis,itisdifficulttodiscernwhetherornotthe with this: if we fit a one-component beta model, shown in the rdjo 8.4-GHz lobes are interacting with the keV gas on these scales. left-hand panel of Fig. 3, we find β = 0.633 with core radius urn N8.o4-GXH-razylocbaevsi,titehsoaurgehotbhsiserlvaecdktoofbeeviddierneccetlyshcoouslpdantioatl bweitihnttehre- ar0dd=iti1v6e.4twaorc-sceocm(poorn∼en2t4bkeptca).mAodfealr,bwethtiecrhfiwtiespolbottaiinnedthewirtihghatn- als.org pscreatleedswasoeuvldidbenecveeoryfadbifsfiecnuclet.tAondyetceacvtitgiievsetnhaatcmoamybeinxaisttioonnothfe(sae) hfiatnwdipthanaelcionrFeigra.d3iu(rsedoflinr0e).=Th1i9s.1maordceselcco(nosris∼ts2o9fkapβc)=an0d.68a6n at Un/ thecompactnessoftheradiosourcecomparedtotheX-rayemis- innersteepcomponent(β =10)tofitthecusp(yellowlines).The ive sionand(b)agreatdealofinterveningkeVgasalongthelineof smalldeviationsbetweenthemodelanddataarise(inpart)because rsity swigohutl.dWbeeeaxspseocctiathteadtawniythcasvuirtfieasceasbsroicgihattneedswsidthectrheem8e.4n-tGsHofzalofbeews tahzeimauntnhualliafrvoemragwehoicfhXt-hreayspfleucxtreasatrheatexvtarrayctsetdroenfgfelyctaivsealyfugnivcetioann of Ke n per cent at most, strongly limiting their detectability. Past litera- ofpositionangle,owingtothemorphologicallydisturbednatureof tu c turepresentsstrongevidence(e.g.Koekemoeretal.1999;O’Dea theX-raygas.Intheplots,errorsbarsareshown,thoughdifficult ky etal.2004)thatthe8.4-GHzsourceisdynamicallyinteractingwith toseebecausetheyaregenerallysmallerthanthedatapoints. Lib the∼104Kemission-linenebula,whichwewilldiscusslater. ra The330-MHzVLAA-configurationobservation(ingreencon- ries 3.4 0.5–7keVspectrumfromacentral100-kpcaperture o tours)doesnotresolvestructuresatthescaleofthe8.4-GHzsource, n A thoughaprominentarmofemissionextends∼70kpctothewest We extract a spectrum from the individual flare-filtered Ob- u g u (projected)instrongspatialcorrelationwiththewesternlargecavity sIDs 6934 and 7329, using a single circular aperture with a s (feature1+2).Itisworthnotingthatthesymmetric50pcscalejets 63.3-arcsec (100kpc) radius encompassing most of the sharply t 20 intheVeryLongBaselineArray(VLBA)mapofTayloretal.(1999) peakedcentralX-rayemission.Priortothis,weremovedcontami- , 20 areapproximatelyaligned(within∼5◦)withthemajoraxisofthe natingpointsources.ThespectrawereextractedusingtheCIAO4.2 14 westernlargecavityandtheextended330-MHzemission(though scriptspecextract,andcount-weightedresponsematriceswere thisofcourseinvolvesacomparisonatvastlydifferentscales).The generatedforeachextraction. blue 1.3-GHz contours are extended along the same axis as the Using simultaneous fitting techniques in XSPEC, we fit a va- 330-MHzeasternextension,theprojectedVLBAjetaxis,thewest- riety of models to the total 0.5–7keV spectrum extracted from ern large cavity, as well as ∼8kpc along the bottom half of the the 100-kpc aperture. The most simple of these is a MEKAL 15-kpc X-ray filament (feature 5). The NE 1.3-GHz hook, which model that has been absorbed to account for attenuation by the is∼15kpcfromtheradiocore,alsocoverstheC05filamentbase galactic hydrogen column (WABS × MEKAL). We also fit ab- cavity(feature6).Thereisalsoa∼1-kpcextensiontotheSW,into sorbed two-component MEKAL models (WABS × [ MEKAL + thebottomopeningofthewesternlargecavity. MEKAL]) as well as the standard cooling flow model in XSPEC Theprojectedspatialcoincidenceofallofthesefeaturesisstrong (WABS × MKCFLOW). Finally, we fit a ‘reduced’ cooling flow evidenceforacommon,currentjetaxis.WhilethePAofthe8.4- model WABS × [MEKAL + MKCFLOW] (e.g. Rafferty et al. GHz source is offset from this axis, it is the exception, and may 2006), in which the high-temperature MKCFLOW parameter is arisefromdynamicalfrustrationofthejetasitpropagatesamidthe tiedtotheMEKALkT parameter.Thephysicalmotivationbehind densemolecularmediumharbouringtheemission-linenebula(this thismodelisthatAGNheatingmaintainsthebulkofthegasatthe has been discussed by e.g. Sarazin et al. 1995; Koekemoer et al. ambienttemperature(fittedbytheMEKALcomponent),whilethe (cid:2)C 2012TheAuthors,MNRAS424,1026–1041 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:2)C 2012RAS AGNfeedbackinAbell2597 1031 D o w n Figure3. X-raysurfacebrightnessprofilesextractedfromaseriesofconcentricannulispanningfromthecentralregionsoutto100kpc.(Leftpanel:a lo a d one-componentbetamodelhasbeenfitted.Rightpanel:atwo-component(additive)betamodelhasbeenfitted,yieldingbetteroverallcorrespondencetothe e d measuredprofile.Theadditivetwo-componentmodelisinred,whilethetwoindividualcomponentstothemodelareshowninorange. fro m h ttp Table1. Simultaneousspectralfitstothe0.5–7keVX-rayspectrumextractedfromacentral100-kpcaperture.Priortoextraction,atemporalfilterwasapplied ://m tothedatatorejectflaringevents,andcompactsourcesassociatedwithotherclustermembersaswellasthecentralweakpointsourceassociatedwiththe n AGNwereremoved.Thespectrawererebinnedusinga30-countthreshold.Observation922hasbeenexcludedfromspectralanalysisduetosignificantflaring ras eventsandhighbackgroundlevels.Symmetric1σ confidenceintervalsareshownonfitparameters.Parametersthathavebeenfrozentoaspecificvalueprior .ox tofittingareshowninparentheses.Inthelastmodel,WABS×[MEKAL+MKCFLOW],wetiethehigh-temperatureMKCFLOWparametertotheMEKAL ford kTparameter,followingsimilar‘reduced’coolingflowmodellingintheliterature(e.g.Raffertyetal.2006;Russelletal.2010). jo u rn a XSPECmodel (×102N0Hcm−2) (kkTelVow) k(kTehVigh) Ab(usonldaarn)ce ME(K×A1L0−n2o)rm. MK(MC(cid:7)FLyOr−W1)M˙ R(eχd.2c/dhoifs)q. ls.org (1) (2) (3) (4) (5) (6) (7) (8) a/ t U WABS×MEKAL 1.5±0.12 ··· 3.42±0.02 0.43±0.01 1.501±0.009 ··· 745/735=1.014 niv WABS×MEKAL 1.63±0.19 ··· 3.39±0.04 (0.4) 1.524±0.008 ··· 754/736=1.025 ers WABS×MEKAL (2.48) ··· 3.31±0.03 (0.4) 1.55±0.005 ··· 807/737=1.096 ity WABS×[MEKAL+MEKAL] (2.48) 2.68±0.13 6.01±1.05 (0.4) 1.10and4.57±2.06 ··· 759/735=1.032 of K WABS×MKCFLOW (2.48) 1.88±0.07 5.33±0.16 (0.4) ··· 497±33 763/736=1.04 e n WABS×MKCFLOW 1.59±0.17 1.87±0.08 5.61±0.17 (0.4) ··· 454±29 707/735=0.96 tu c WABS×[MEKAL+MKCFLOW] (2.48) (0.1) 3.47±0.05 0.43±0.018 1.47±0.0002 22±5 740/739=1.008 ky L ib ra rie s MKCFLOWcomponentmodelsresidualcoolingfromthatambient on 3.5 Hardnessanalysis A temperature(hencetheparametersharing)below0.1keV(towhich u k0T.0l8ow21i.s fixed). In all cases, the source redshift was fixed to z = IinneFnige.rg5ywspeacsheofworstohfet (a0d.a5p–t1ivkeelVy)smthoroouthgehdhcaormdb(i2n–e7dkCeVha)ncdurtas gust 20 Results from our modelling are shown in Table 1. As evident data. In each panel we overlay the 8.4-GHz radio map in black , 20 incolumn8ofthetable,thefitsareuniformly‘good’intermsof contours, which for reference is ∼10kpc from end-to-end. The 14 reducedχ2,indicativeofthedegeneracythatalmostalwaysarises previouslymentioned15-kpcNEfilamentbecomesfainteratsuc- fromthistypeofX-rayspectralfitting.Thelastlineofthistable cessivelyharderslicesinenergyspace,andeffectivelydisappearsin listsresultsfromfittingthe‘reduced’coolingflowmodel,WABS× therightmostpanel.Thefilamentisthereforearelativesoftexcess [MEKAL+MKCFLOW],whichhasbeenusedfrequentlyinre- andislikelytobecolderthanthesurroundinggas.Thebutterflyfea- centliterature(e.g.Russelletal.2010).WeshowthisfitinFig.4 turealsolosesmuchofitsNE–SWwidthathigherenergieswhile (greenline).Theindividualadditivemodelcomponents(MEKAL retainingeffectivelythesameextensionalongtheNW–SEaxisthat andMKCFLOW)areshowninredsolidlinesandlabelledaccord- isalignedwiththemajoraxisoftheBCGstellarisophotes.Wehave ingly.Thehigh-temperatureparameterintheMKCFLOWcompo- alsocreatedahardnessratiomap,butthiswillbediscussedinthe nenthasbeentiedtotheMEKALambienttemperaturecomponent followingsection.Inthe1–2keVpanel,wehavemarkedtheloca- tosimulatearesidualcoolingflowproceedingatlowlevelsfromthe tionofthe‘hotarc’,afeaturewhichwillbediscussedinSections4 hotX-rayatmosphere.Fitresidualsareshowninthebottompanel and6. usingthesamecolourcoding.Theyreachan∼8percentmaximum WenotethatsoftX-rayemissionalonglinesofsightthatpass attheFeL1-keVpeak.Wediscusstheresidualcoolingflowmodel throughthegalaxymidplanesuffersmoreattenuationfromthein- forA2597atgreaterlengthinTremblayetal.(2012). trinsichydrogencolumnthandoeshardX-rayemission.Moreover, (cid:2)C 2012TheAuthors,MNRAS424,1026–1041 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:2)C 2012RAS 1032 G.R.Tremblayetal. D o w n lo a d e d fro m h ttp ://m n ra s .o x fo rd jo u rn a ls .o rg a/ t U n iv e rs ity o Figure4. 0.5–7keVX-rayspectrumoftheinnermost100kpcoftheA2597BCG,extractedfromChandraobservations6394(blackopencircles)and7329 f K (blueclosedcircles).Thespectrahavebeenextractedindependently,groupedusinga30countbinsize,backgroundsubtracted,andfittedsimultaneouslyafter e n removalofcontaminatingsources.Areducedcoolingflowmodel(greensolidline)hasbeenfittedtothedata(WABS×[MEKAL+MKCFLOW]inXSPEC). tuc k Theindividualadditivemodelcomponents(MEKALandMKCFLOW)areshowninredsolidlinesandlabelledaccordingly.Thehigh-temperatureparameter y L intheMKCFLOWcomponenthasbeentiedtotheMEKALambienttemperaturecomponenttosimulatearesidualcoolingflowproceedingatlowlevelsfrom ib thehotX-rayatmosphere.Fitresidualsareshowninthebottompanelusingthesamecolourcoding.Theyreachan∼8percentmaximumattheFeL1-keV ra peak.SeethelastentryinTable1formodelparametersassociatedwiththisfit.Notethatothermodelfitspresentedinthesametableyieldsimilarresultsin ries termsofreducedχ2,illustrativeofthedegeneracyinherentinthissortofX-rayspectralfitting. on A u g u s t 2 0 , 2 0 1 4 Figure5. TheadaptivelysmoothedChandraimageofA2597shownatvariousslicesinenergyspace,including(fromlefttoright)‘total’(0.5–7keV),‘soft’ (0.5–1keV),‘medium’(1–2keV)and‘hard’(2–7keV)emission.Inblackcontours,weoverlaythe8.4-GHzradiocontoursofPKS2322−122,andinwhite contoursweoverlayastellarisocontourfromtheHST R-bandobservationofthehostgalaxy.Theblacklineatthebottomleftcorneroftheleftmostpanel marksadistanceof10arcsec(15kpc).NotethatthemajoraxisofthehostgalaxystellarisophoteisalignedalongthesamepositionangleastheX-raymajor axis.Thebrightfilamentwhichextends15kpcNEfromthecentreinthetotalandsoftpanelsiseffectivelyabsentintherightmosthardpanel.Thefilamentis thereforeasoftexcess,colderthanthesurroundinggas.ThehardX-ray‘disc’evidentintherightmostpanelisalignedinprojectionwiththeisophotalmajor axisofitshostgalaxy’sstellarcomponent. (cid:2)C 2012TheAuthors,MNRAS424,1026–1041 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:2)C 2012RAS AGNfeedbackinAbell2597 1033 asthelineofsightmovesawayfromtheprojectedmidplane,the same∼60×60kpc2 FOVcentredontheX-raycentroidatRA= absorbinghydrogencolumngetssmaller,resultinginsmallerhard- 23h25m19s.75 and Dec. = −12◦07(cid:6)26(cid:6).(cid:6)9 (J2000). East is left and nessratios.Itisthereforedifficulttobreakthedegeneracybetween northisup. (a)truespatialdistributionofsoftversushardX-rayemittinggas Wefirstnotethattheoveralltemperaturegradientisreasonably and(b)preferredsoft-endabsorptionbytheBCGhydrogencolumn. consistentwiththeprojectedradialtemperatureprofile(Fig.6,top Byiterativelyincreasingthemagnitudeofthephotoelectricabsorp- left)overthesameradius.Weobservetwosignificantspatialfluctu- tioncomponentinaWABS×MEKALfittotheX-rayspectrum, ationsfromtheazimuthallyaveragedtemperaturegradient,namely wehaveestimatedthatahydrogencolumnof(cid:2)1023 cm−2 would the ‘cold filament’ and ‘hot arc’ features, which are outlined and berequiredtoattenuateenoughofthesoftX-rayfluxtogiverise labelledaccordinglyinFig.8. to such confusion. Such a high column density is not consistent IncomparingthetopleftpanelwithFig.2,itcanbeseenthat withresultsfromourX-rayspectralmodelling,asdiscussedinthe theopeningofthehotarcborders,inprojection,theeasternedge sectionaboveandshowninTable1.Wethereforeconsideritlikely ofthewesternlargecavity(features1and2).Thecentralaxisof thatthehardexcessobservedinthegalaxymidplaneisreal. theextendedwesternarmofthe330-MHzradioemissionspatially coincideswiththeprojectedcentreofthehotarcstructure,justas itdoesthewesterncavity. 3.6 Radialprofilesofgasproperties As can be seen by comparing the temperature map with the D o Weobtainradialprofilesoftemperature,density,pressureanden- overlaid X-ray surface brightness contours (right panel), the 10- wn tropybyextractingspectrafrombothObsIDs7329and6934usinga arcsec(∼15kpc) coldfilamentisnearlycospatialwiththebright loa d seriesof20concentriccircularannuliwitha1.5-arcsecinnerradius, X-ray filament seen in Fig. 1. In the hardness analysis presented ed 3.6-arcsecstackingincrementand74-arcsecouterradius.Weighted inSection3.5,weshowthatthisbrightfilamentisassociatedwith fro m responsematricesweregenerated,andthebackground-subtracted anX-raysoftexcess(seeFig.5).Thereisslightspatialmismatch h aspbesoctrrbaefdroMmEeKaAchLamnnoudleulss(waserbeefifottreed,Nsim,uZltaanndeozuwselyreinfroXzSePEnCtowtihthe bbientwnienegnanthdesmfeoatoutrheisn,gbpurtocthesisseissunnodterstuarkpernisdinugringgivcerneatthioensopfattihael ttp://m H n appropriatevalues).Theextractedspectraareanemission-weighted maps. Inevitably, this results in some loss of spatial information ra s superpositionofpropertiesalongthelineofsightextendingthrough onatleastthescaleofthecontourbinsizes.Butwhenconsidered .o x a3Ddistributionofthermalplasma.Projectioneffectsaretherefore together,Figs5and7clearlyshowthatfeature5inFig.2isa‘cold’ fo rd important;however,typical‘onionskin’spectraldeprojectiontech- filament. jo u niquesarenotappropriateinthiscaseastheinner100kpcofX-ray InFig.9weshowthepseudo-entropy,3 pseudo-pressure,metal rn a emissionshowsverylargedeparturesfromsphericalsymmetry.We abundance and hardness ratio maps. We overlay 330-MHz and ls.o thereforechoosetoshowonlyprojectedspectralprofiles.2 1.3-GHz contours on the pseudo-entropy map (top left panel) in rg In Fig. 6 (top to bottom) we show the projected temperature, blackandwhite,respectively.330-MHz,1.3-GHzand8.4-GHzcon- at U/ electrondensity,pressureandentropyprofiles(respectively)outto tours are shown on the pseudo-pressure map (top right) in black, n 100kpc.ThelatterthreequantitiesarederivedfromtheMEKAL green and white, respectively. We intentionally show fewer 330- ive rs normalization (emission measure) using the equations listed in MHzcontoursonthepseudo-entropymaptoallowthehotarcfea- ity the Fig. 6 caption, as well as a simple volume assumption. See turetobeclearlyvisible.Oneachmap,thelocationofthehotarc of K Tremblay (2011) for more detail on how these profiles were ob- featureseenintheX-raytemperaturemapismarked.Bothpseudo- e n tained.WemarkthelocationoftheX-raycavitynetworkoneach entropyandpseudo-pressureareelevatedinthehotarcregion.This tu c profile,andnoteamarginalsteepeningofthetemperaturegradient resultwillbediscussedinmoredetailinSection6. ky L withinthisregion.Allofourprofilesareconsistentwithpaststudies InthebottomleftpanelofFig.9weshowthemetalabundance ib o9f22b;oMthctNheameaarrlaye1t8a-l.k2s0(0g1o;oCdatvimagen)oCloheatnadlr.a20o0b9se)ravnadtiothne(XOMbsMID– mabaupn.dKanirckepaintriAck2,5M97cNinammaorrae&deCtaaivlatghnaonlow(e20w1i1ll)dsotudhieerde.mTehtaalt raries o Newton observation of A2597 (Morris & Fabian 2005). We plot work found higher abundance gas extended along the cavity and n A independentconsistencychecksonourdensityandentropyprofiles radioaxisinA2597,andsuggestedthatthiscouldbeevidencefora ug u byusingourBetamodelfittedtothesurfacebrightnessprofileand metal-enrichedoutflowdrivenbytheradiosource.Sucharesultis st 2 theentropyparametrizationfromCavagnoloetal.(2009),respec- consistentwithpredictionsfromtheoreticalAGNfeedbackmodels 0 tively.Thestarformationthresholdmarkedontheentropyprofile (e.g. Pope et al. 2010; Gaspari, Ruszkowski & Sharma 2012), as , 20 1 isdiscussedinTremblayetal.(2012). wellasresultsfromotherCCclusters(e.g.HydraA;Simionescu 4 etal.2009;Gittietal.2011).Ourabundancemaphasbeenmade withlargespatialbinsusingaS/N=70threshold,asnotedprevi- 4 X-RAY SPECTRAL MAPS ously.Thisresultsinlossofspatialinformationonthescaleofthe In the left-hand panel of Fig. 7 we present the projected X-ray coldfilamentandhotarc,thoughwedonotethathigherabundance temperaturemap.330-MHz,1.3-GHzand8.4-GHzradiocontours gasisgenerallyextendedalongthecavityandradioaxis,consis- areoverlaidinblack,greenandwhite,respectively.Theright-hand tent with the results from Kirkpatrick et al. (2011). Higher-than- panel shows the same map, smoothed with an adaptive Gaussian average abundance is not observed at the location of the western kernelasaviewingaid.WeoverplottheadaptivelysmoothedX-ray largecavity(markedwiththewhitearrow),butitisseenalongits surfacebrightnesscontoursinblack.Thecolourmapencodesthe edges.Thismightbeexpectedifthemetal-enrichedgaswaspushed best-fitting MEKAL gas temperature (kT) using the scale shown at the right of the figure. Both panels are aligned and share the 3Weusetheterm‘pseudo’becausethesquarerootoftheemissionmeasure (i.e. the MEKAL normalization) is used as a proxy for the gas density. 2Asatest,wedidattemptsphericaldeprojection,andtheresultswerevery No inherently uncertain volume assumption is made, so this cannot be similartoourprojectedprofiles. consideredtheactualgasdensity. (cid:2)C 2012TheAuthors,MNRAS424,1026–1041 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:2)C 2012RAS

Description:
Abell 2597 – galaxies: clusters: intracluster medium – galaxies: star formation. entropy and pseudo-pressure are elevated in the hot arc region.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.