ebook img

Multiphase Science and Technology: Volume 2 PDF

495 Pages·1986·62.056 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiphase Science and Technology: Volume 2

Vol. 2 G.F. Hewitt · J.M. Delhaye · N. Zuber Multiphase Science and Technology MULTIPHASE SCIENCE AND TECHNOLOGY Editorial Advisory Board D. AZIZ S. S. KUTATELADZE Department of Chemical Engineering Institute of Thermophysics The Universit'y of Calgary Novosibirsk 63 0090, USSR Calgary T2N 1 N4, Canada K. R. LAWTHER S. BANERJEE A.A.E.C. Research Establishment Chemical and Nuclear Engineering Privatemail bag, Sutherland 2232 Departinent NSW Australia University of California Santa Barbara, California 93106, USA F. MARBLE H. BRAUER Jet Propulsion Center California Institute of Technology Technische Universität Berlin Pasadena, CA 91125, USA Institut für Chemieingenieurtechnik 1 Berlin 10, RFA F. MAYINGER J. C. CHARPENT1ER Lehrstule A. für Thermodynamik CPIC/ENSIC Technische Universitat München 54042 Nancy Cedex, France 8000 München 2 Arcistrasse 21 J.G.COLLIER München, FRG Central Electricity Generating Board Generation and Construction Division G.OOMS Barnwood, Gloucester GL4 7RS, England Sheil Research B.V. M. CUMO Badhuisweg 3 Comitato per I'Energia Nucleare Postbus 3003 Centro Studi Nucleari della Casaccia 1003AA Amsterdam, The Netherlands Departimento Reattori Termici Rome, Italy F. RESCH Institut de Mecanique Statistique de la M. GIOT Turbulence Departement Thermodynamique 13003 Marseille, France et Turbomachines B-1348 Louvain la Neuve, Belgium L. E. SCRIVEN Department of Chemical Engineering D.HASSON and Materials Science Technion University of Minnesota Department of Chemical Engineering Minneapolis, MN 55455, USA Haifa, Israel M. HIRATA G. V. TSIKLAURI University of Tokyo Institute of High Temperature Department of Mechanical Engineering Krasnokas Armenaya Bunkyo-Ku Moscow, USSR Tokyo 113, Japan M. WICKS A. KONORSKI Shell Oil Company Instytut Maszyn Przeplywowych P. O. Box 3105 80 - 952 Gdansk, Poland Houston, TX 77001, USA MULTIPHASE SCIENCE AND TECHNOLOGY Volume 2 Edited by G. F. Hewitt Thermal Hydraulics Division U.K. Atomic Energy Authoritv Harwell Laboratory, England and Department of Chemicai Engineering and Chemical Technology Imperial College of Science and Technology London, England J. M. Delhaye Centre d'Etudes Nucleaires de Grenoble Service des Transferts Thermiques Grenoble, France N. Zuber Division of Reactor Safety Research U.S. Nuclear Regulatory Commission Washington, D.C., U.S.A. Springer-Verlag Berlin Heidelberg GmbH MULTIPHASE SCIENCE AND TECHNOLOGY, Volume 2 Copyright © 1986 by Springer-Verlag Berlin Heidelberg All rights reserved. Originally published by Springer-Verlag in 1986 Except as permitted under the United States Copyright Act of 1976, no part of this publkation may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. 1234567890 BCBC 89876 Library of Congress Cataloging in Publication Data (Revised tor volume 2) Main entry under title: Multiphase science and technology. Includes bibliographies and indexes. 1. Vapor-liquid equilibrium-Addresses, essays, lectures. 2. Ebullition-Addresses, essays, lectures. 3. eooling -Addresses, essays, lectures. I. Hewitt, G. F. (Geoffrey Frederick) 11. Delhaye, J. M. date. 111. Zuber, N. TP156.E65M84 660.2'96 81-4527 ISBN 978-3-662-01659-6 ISBN 978-3-662-01657-2 (eBook) DOI 10.1007/978-3-662-01657-2 Contents Preface xiii Contents of Volume 1 xv Chapter 1 Flow Pattern Transitions in Gas-liquid Systems: Measurement and Modeling A. E. Dukler and Y. Taitel 1 1 Introduction 1 2 Classification of Flow Patterns 3 2.1 Horizontal Pipes: Fig. 1 4 2.1.1 Stratified 4 2.1.2 Intermittent 5 2.1.3 Annular 5 2.1.4 Dispersed Bubble 5 2.2 Vertical Pipes: Fig. 2 5 2.2.1 Bubble Flow 5 2.2.2 Slug Flow 5 2.2.3 Chum Flow 6 2.2.4 Annular Flow 6 3 Flow-Pattern Detection 7 3.1 Visual Methods 7 3.2 Methods Based on Pressure Measurement 8 3.3 Methods Based on Photon Attenuation 11 3.4 Methods Based on Electrical Conductivity 12 4 Modeling Flow-Pattern Transitions: So me General Ideas 14 5 Horizontal and Slightly Inclined Pipes: Steady Motion without Mass Transfer between Phases 16 5.1 Equilibrium Stratified Flow 16 5.2 Transition from Stratified Flow 19 5.3 Transition between Intermittent and Annular 22 5.4 Transition between Stratified-Smooth and Stratified-Wavy Patterns 23 5.5 Transition between Intermittent and Dispersed Bubble Patterns 25 5.6 The Flow Pattern Map: Summary 26 5.6.1 Comparison with Data 26 6 Effect of Flow Transients in Horizontal Pipes 29 6.1 Analysis 30 6.2 An Example: Liquid Feed Transients 33 6.3 An Example: Fast Gas Transients 34 7 Effects of Boiling and Condensation in Horizontal Pipes 37 7. 1 Analysis 37 7.2 Transition Criteria 41 v vi Contents 8 Vertical Pipes: Steady Motion without Mass Transfer-Upflow and Downflow 46 8.1 Concurrent Upflow 47 8.1.1 Bubble-to-Slug Transition 47 8.1.2 Slug-to-Churn Transition 53 8.1.3 Transition from Annular Flow 57 8.1.4 Discussion 59 8.2 Concurrent Downflow 61 8.2.1 Transition from Annular Flow 61 8.2.2 Slug-to-Dispersed Bubble Transition 64 9 Effect of Pipe Inclination 65 9.1 Concurrent Upward Flow in an Inclined Tube 66 9.1.1 Bubble-to-Slug Transition and Minimum Inclination Angle for Bubbly Flow 67 9.1.2 Transition from Annular Flow 70 9.1.3 Slug-to-Churn Transition 70 9.1.4 Intermediate Angles of Inclination 70 9.2 Concurrent Downward Flow in an Inclined Tube 71 9.2.1 Stratified Smooth-to-Stratified Wavy Transition 73 9.2.2 Stratified-to-Annular Transition 73 10 Transition Mechanisms in Tubes: An Overview 76 11 Vertical Rod Bundles 77 11 . 1 Bubble Rise Velocities 78 11.2 Bubble-to-Slug Transition 82 11.3 Slug-to-Churn Transition 84 11.4 Churn-to-Annular Transition 84 Nomenclature 87 References 88 Chapter 2 A Critical Review of the Flooding literature S. George Bankoff and Sang Chun Lee 95 1 Introduction 95 1.1 Description of Vertical Countercurrent Annular Flow 96 1.2 Characteristics of the Flooding Phenomenon 97 1.3 Associated Phenomena 99 1.4 Classification of Previous Flooding Studies 102 2 Fundamentals of Countercurrent Flow 102 2.1 Pressure Drop 103 2.1.1 Adiabatic Flow 103 2.1.2 Condensing Flow 106 2.2 Mean Film Thickness 107 2.2.1 Falling Film without Gas Flow 107 2.2.2 Liquid Film with Countercurrent Gas Flow 109 2.3 Interfacial Shear Stress 110 2.3.1 Adiabatic Flow 111 2.3.2 Condensing Flow 114 3 Classification of Flooding Models 115 Contents vii 4 Brief Review of Analytical Models 116 4. 1 Stability Theory of a Traveling Wave 116 4.1 .1 Potential Flow Model 116 4. 1 .2 Viscous Flow Model 126 4.1.3 Finite-Amplitude Wave Model 127 4.2 Envelope Theories 129 4.2.1 Separate Cylinders Model 129 4.2.2 Orift-Flux Model 130 4.2.3 Separated-Flow Models 130 4.3 Static Equilibrium Theories 133 4.3.1 Stationary Wave Model 133 4.3.2 Hanging Film Model 134 4.3.3 Roll Wave Model 135 4.4 Theory of Slug Formation 136 4.4.1 Kordyban and Ranov Model 136 4.4.2 Wallis and Oobson Model 138 4.4.3 Taitel and Oukler Model 139 4.4.4 Gardner Model 140 4.4.5 Mishima and Ishii Model 141 5 Experimental Investigations 142 5.1 Experimental System 142 5.2 Empirical Correlations 143 6 Comparisons and Discussion 150 6.1 Flooding without Phase Change 150 6.2 Flooding with Phase Change 161 7 Further Aspects of Vertical Countercurrent Flooding 168 7. 1 Tube-End Conditions 168 7.2 Tube Length 169 7.3 Tube Diameter 169 7.4 Liquid Droplet Entrainment 170 8 Summary and Conclusions 171 Nomenclature 172 References 175 Chapter 3 A Comprehensive Examination of Heat Transfer Correlations Suitable for Reactor Safety Analysis D. C. Groeneveld and C. W. Snoek 181 1 Introduction 181 2 Single-Phase Heat Transfer 184 2.1 lntroduction 184 2.2 Subcooled Water Heat Transfer 184 2.3 Superheated Steam Heat Transfer 184 2.4 Bundle Geometry 186 2.5 Entrance and Spacer Effects 186 3 Nucleate Boiling and Convective Evaporation 188 3.1 Introduction 188 viii Contents 3.2 Prediction Methods 189 3.2.1 Nucleate Boiling Only 189 3.2.2 Saturated Boiling: Nucleate Boiling and Forced Convective Evaporation 189 3.3 Conc!usions and Final Remarks 194 4 Criticai Heat Flux 195 4.1 Introduction 195 4.2 Correlations 195 4.3 Alternative Prediction Methods 202 4.3.1 Analytical Methods 202 4.3.2 Table Look-Up Technique 203 4.3.3 Graphical Techniques 210 4.4 Parametrie Trends 210 4.4.1 General 210 4.4.2 Cross-Section Geometry 214 4.4.3 Effect of Rod-Spacing Devices 215 4.4.4 Effect of Heat Flux Distribution 216 4.4.5 Transient Effects 217 4.4.6 Other Effects 217 4.5 Final Remarks 218 5 Transition Boiling 218 5.1 Introduction 218 5.2 Data Trends 219 5.3 Correlations 219 5.4 Prediction of the Critical Heat Flux Temperature 225 5.5 Discussion 226 5.6 Final Remarks 226 6 Minimum Film Boiling 227 6.1 Introduction 227 6.2 Minimum Film Boiling Types 227 6.3 Prediction Methods 233 6.4 Correlation Assessments 234 6.4. 1 Data Trends 234 6.4.2 Comparison with Data 235 6.4.3 Discussion 236 6.5 Final Remarks 237 7 Film Boiling 238 7.1 Introduction 238 7.2 Prediction Methods 238 7.2.1 Post-Dryout Models 238 7.2.2 Post-Dryout Correlations 239 7.3 Comparison with Experimental Data 250 7.3.1 Available Data 250 7.3.2 Comparison with Tube Data 250 7.3.3 Comparison with Rod Bundle Data 253 7.3.4 Miscel!aneous 255 7.4 Final Remarks 255 8 Summary of Conc!usions and Final Remarks 256 Acknowledgments 257 Contents ix Nomenc!ature 257 References 260 Chapter 4 Reboilers P. B. Whalley and G. F. Hewitt 275 1 Introduction 275 2 Types of Reboilers 275 2.1 Internal Reboiler 275 2.2 Kettle Reboiler 277 2.3 Vertical Thermosyphon Reboiler 278 2.4 Horizontal Thermosyphon Reboiler 281 2.5 Selection of Type 283 3 Detailed Experimental Studies 285 3.1 Kettle Reboilers 285 3.2 Vertical Thermosyphon Reboilers 292 4 Problems in Design 295 4.1 Kettle and Internal Reboilers 296 4.2 Vertical Thermosyphon Reboilers 296 4.3 Horizontal Thermosyphon Reboilers 296 5 A Design Strategy 297 5.1 Simulation Calculation 297 5.2 Design Calculation 297 6 Two-Phase Pressure Drop 298 6.1 Components of Two-Phase Pressure Drop 298 6.2 Two-Phase Frictional Pressure Drop in Tubes 299 6.3 Void Fraction in Tubes 300 6.4 Two-Phase Frictional Pressure Drop in Cross Flow 301 6.5 Void Fraction in Cross Flow 302 6.6 Use of the Homogeneous Model of Two-Phase Flow 303 7 Boiling Heat Transfer Coefficients 305 7.1 Boiling Inside Tubes 305 7.2 Boiling in Cross Flow 310 8 Critical Heat Flux 312 8.1 Critical Heat Flux Inside Tubes 312 8.2 Critical Heat Flux in Cross Flow 315 9 instability 318 1 0 Conclusions 322 Nomenclature 323 References 327 Chapter 5 Flow of Gas-Solid Mixtures through Stand pipes and Valves L. S. Leung and P. J. Jones 333 1 Introduction 333

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.