ebook img

Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications PDF

425 Pages·2017·14.766 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications

Multiphase ReactoR engineeRing foR clean and low‐caRbon eneRgy applications Multiphase ReactoR engineeRing foR clean and low‐caRbon eneRgy applications Edited by yi cheng, fei wei, and yong Jin Department of Chemical Engineering Tsinghua University, Beijing, PR China Copyright © 2017 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per‐copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750‐8400, fax (978) 750‐4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201) 748‐6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762‐2974, outside the United States at (317) 572‐3993 or fax (317) 572‐4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging‐in‐Publication Data Names: Cheng, Yi, 1970– editor. | Wei, Fei, 1962– editor. | Jin, Yong, 1935– editor. Title: Multiphase reactor engineering for clean and low-carbon energy applications / edited by Yi Cheng, Fei Wei, Yong Jin. Description: Hoboken, New Jersey : John Wiley & Sons, Inc., [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016041899 | ISBN 9781118454695 (cloth) | ISBN 9781119251088 (epub) Subjects: LCSH: Synthetic fuels. | Clean coal technologies. | Chemical reactors. | Clean energy. Classification: LCC TP360 .M79 2017 | DDC 662.6/25–dc23 LC record available at https://lccn.loc.gov/2016041899 Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 cONTeNTS Preface xiii LIST Of cONTrIBUTOrS xv 1 Novel fluid catalytic cracking Processes 1 Jinsen Gao, Chunming Xu, Chunxi Lu, Chaohe Yang, Gang Wang, Xingying Lan and Yongmin Zhang 1.1 FCC Process Description, 1 1.2 Reaction Process Regulation for the Heavy Oil FCC, 3 1.2.1 Technology Background, 3 1.2.2 Principle of the Technology, 3 1.2.3 Key Fundamental Research, 4 1.2.4 Industrial Validation, 7 1.3 Advanced Riser Termination Devices for the FCC Processes, 10 1.3.1 Introduction, 10 1.3.2 General Idea of the Advanced RTD System, 11 1.3.3 Development of the External‐Riser FCC RTD Systems, 12 1.3.4 Development of the Internal‐Riser FCC RTDs, 15 1.3.5 Conclusions and Perspectives, 18 1.4 An MZCC FCC Process, 19 1.4.1 Technology Background, 19 1.4.2 Reaction Principle for MZCC, 19 1.4.3 Design Principle of MZCC Reactor, 20 1.4.4 Key Basic Study, 23 1.4.5 The Industry Application of MZCC, 23 1.4.6 Prospectives, 26 1.5 Two‐Stage Riser Fluid Catalytic Cracking Process, 28 1.5.1 Preface, 28 1.5.2 Reaction Mechanism of Heavy Oil in the Riser Reactor, 29 1.5.3 The Proposed TSR FCC Process, 32 1.5.4 The Industrial Application of the TSR FCC Technology, 33 1.5.5 The Development of the TSR FCC Process, 33 1.6 FCC Gasoline Upgrading by Reducing Olefins Content Using SRFCC Process, 36 1.6.1 Research Background, 36 1.6.2 Reaction Principle of Gasoline Upgrading, 37 v vi COnTEnTS 1.6.3 Design and Optimization on the Subsidiary Riser, 38 1.6.4 Key Fundamental Researches, 38 1.6.5 Industrial Applications of the SRFCC Process, 42 1.6.6 Outlook, 43 1.7 FCC Process Perspectives, 44 References, 45 2 coal combustion 49 Guangxi Yue, Junfu Lv and Hairui Yang 2.1 Fuel and Combustion Products, 49 2.1.1 Composition and Properties of Fuel, 49 2.1.2 Analysis of Compositions in the Fuel, 50 2.1.3 Calorific Value of Fuel, 50 2.1.4 Classifications of Coal, 50 2.1.5 Combustion Products and Enthalpy of Flue Gas, 51 2.2 Device and Combustion Theory of Gaseous Fuels, 52 2.2.1 Ignition of the Gaseous Fuels, 52 2.2.2 Diffusion Gas Burner, 52 2.2.3 Fully Premixed‐Type Gas Burner, 53 2.3 Combustion Theory of Solid Fuel, 53 2.3.1 The Chemical Reaction Mechanism of Carbon Combustion, 54 2.3.2 Carbon Combustion Reaction Process, 54 2.4 Grate Firing of Coal, 55 2.4.1 Coal Grate Firing Facilities, 56 2.5 Coal Combustion in CFB Boiler, 57 2.5.1 The Characteristic of Fluidized Bed, 57 2.5.2 Combustion Characteristic of CFB Boiler, 58 2.5.3 Development of Circulating Fluidized Bed Combustion Technology, 58 2.5.4 Comparison Between Bubbling Fluidized bed and Circulating Fluidized Bed, 59 2.6 Pulverized Coal Combustion, 60 2.6.1 Furnace Type of Pulverized Coal Combustion, 61 2.6.2 Circulation Mode of Water Wall, 62 2.6.3 Modern Large‐Scale Pulverized Coal Combustion Technology, 62 2.6.4 The International Development of the Supercritical Pressure Boiler, 62 References, 63 3 coal Gasification 65 Qiang Li and Jiansheng Zhang 3.1 Coal Water Slurry, 65 3.1.1 The Advantage of CWS, 65 3.1.2 The Production of CWS, 66 3.1.3 The Atomization of CWS, 67 3.2 The Theory of Coal Gasification, 70 3.2.1 Overview of Coal Gasification, 70 3.2.2 The Main Reaction Processes of Coal Gasification, 72 3.2.3 Kinetics of Coal Gasification Reaction, 73 3.2.4 The Influencing Factors of Coal Gasification Reaction, 77 3.3 Fixed Bed Gasification of Coal, 79 3.3.1 The Principle of Fixed Bed Gasification, 79 3.3.2 The Classification of Fixed Bed Gasification Technology, 81 3.3.3 Typical Fixed Bed Gasification Technologies, 81 3.3.4 The Key Equipment for Pressurized Fixed Bed Gasifier, 85 3.3.5 The Application and Improvement of Pressurized Fixed Bed Gasifier in China, 89 COnTEnTS vii 3.4 Fluid Bed Gasification of Coal, 90 3.4.1 The Basic Principles of Fluidized Bed Gasification, 90 3.4.2 Typical Technology and Structure of Fluidized Bed Gasification, 91 3.5 Entrained Flow Gasification of Coal, 98 3.5.1 The Principle of Entrained Flow Gasification Technology, 98 3.5.2 Typical Entrained Gas Gasification Technologies, 101 3.6 Introduction to the numerical Simulation of Coal Gasification, 112 3.6.1 The numerical Simulation Method of Coal Gasification, 112 3.6.2 Coal Gasification numerical Simulation (CFD) Method, 113 References, 116 4 New Development in coal Pyrolysis reactor 119 Guangwen Xu, Xi Zeng, Jiangze Han and Chuigang Fan 4.1 Introduction, 119 4.2 Moving Bed with Internals, 121 4.2.1 Laboratory Tests at Kilogram Scale, 122 4.2.2 Verification Tests at 100‐kg Scale, 125 4.2.3 Continuous Pilot Verification, 127 4.3 Solid Carrier FB Pyrolysis, 129 4.3.1 Fundamental Study, 130 4.3.2 Pilot Verification with Air Gasification, 136 4.4 Multistage Fluidized Bed Pyrolysis, 139 4.4.1 Experimental Apparatus and Method, 139 4.4.2 Results and Discussion, 141 4.5 Solid Carrier Downer Pyrolysis, 145 4.5.1 Experimental Apparatus and Method, 146 4.5.2 Results and Discussion, 147 4.6 Other Pyrolysis Reactors, 149 4.6.1 Solid Heat Carrier Fixed Bed, 149 4.6.2 A Few Other new Pyrolysis Reactors, 150 4.7 Concluding Remarks, 153 Acknowledgments, 153 References, 153 5 coal Pyrolysis to acetylene in Plasma reactor 155 Binhang Yan and Yi Cheng 5.1 Introduction, 155 5.1.1 Background, 155 5.1.2 Principles and Features of Thermal Plasma, 156 5.1.3 Basic Principles of Coal Pyrolysis in Thermal Plasma, 157 5.1.4 Development of Coal Pyrolysis to Acetylene Process, 158 5.2 Experimental Study of Coal Pyrolysis to Acetylene, 159 5.2.1 Experimental Setup, 159 5.2.2 Typical Experimental Results, 161 5.3 Thermodynamic Analysis of Coal Pyrolysis to Acetylene, 164 5.3.1 Equilibrium Composition with/without Consideration of Solid Carbon, 164 5.3.2 Validation of Thermodynamic Equilibrium Predictions, 164 5.3.3 Effect of Additional Chemicals on Thermodynamic Equilibrium, 165 5.3.4 Key Factors to Determine the Reactor Performance, 166 5.3.5 Key Factors to Determine the Reactor Performance, 168 5.4 Computational Fluid Dynamics‐Assisted Process Analysis and Reactor Design, 171 viii COnTEnTS 5.4.1 Kinetic Models of Coal Devolatilization, 171 5.4.2 Generalized Model of Heat Transfer and Volatiles Evolution Inside Particles, 176 5.4.3 Cross‐Scale Modeling and Simulation of Coal Pyrolysis to Acetylene, 180 5.5 Conclusion and Outlook, 183 References, 186 6 Multiphase flow reactors for Methanol and Dimethyl ether Production 189 Tiefeng Wang and Jinfu Wang 6.1 Introduction, 189 6.1.1 Methanol, 189 6.1.2 Dimethyl Ether, 189 6.2 Process Description, 191 6.2.1 Methanol Synthesis, 191 6.2.2 DME Synthesis, 192 6.2.3 Reaction Kinetics, 195 6.3 Reactor Selection, 197 6.3.1 Fixed Bed Reactor, 197 6.3.2 Slurry Reactor, 198 6.4 Industrial Design and Scale‐Up of Fixed Bed Reactor, 200 6.4.1 Types of Fixed Bed Reactors, 200 6.4.2 Design of Large‐Scale Fixed Bed Reactor, 201 6.5 Industrial Design and Scale‐Up of Slurry Bed Reactor, 202 6.5.1 Flow Regime of the Slurry Reactor, 202 6.5.2 Hydrodynamics of Slurry Bed Reactor, 203 6.5.3 Process Intensification with Internals, 203 6.5.4 Scale‐Up of Slurry Reactor, 206 6.6 Demonstration of Slurry Reactors, 213 6.7 Conclusions and Remarks, 214 References, 215 7 fischer–Tropsch Processes and reactors 219 Li Weng and Zhuowu Men 7.1 Introduction to Fischer–Tropsch Processes and Reactors, 219 7.1.1 Introduction to Fischer–Tropsch Processes, 219 7.1.2 Commercial FT Processes, 219 7.1.3 FT Reactors, 220 7.1.4 Historical Development of FT SBCR, 221 7.1.5 Challenges for FT SBCR, 222 7.2 SBCR Transport Phenomena, 222 7.2.1 Hydrodynamics Characteristics, 222 7.2.2 Mass Transfer, 226 7.2.3 Heat Transfer, 229 7.3 SBCR Experiment Setup and Results, 231 7.3.1 Introduction to SBCR Experiments, 231 7.3.2 Cold Mode and Instrumentation, 234 7.3.3 Hot Model and Operation, 247 7.4 Modeling of SBCR for FT Synthesis Process, 249 7.4.1 Introduction, 249 7.4.2 Model Discussion, 250 7.4.3 Multiscale Analysis, 256 7.4.4 Conclusion, 258 COnTEnTS ix 7.5 Reactor Scale‐Up and Engineering Design, 259 7.5.1 General Structures of SBCR, 259 7.5.2 Internal Equipment, 259 7.5.3 Design and Scale‐Up Strategies of SBCR, 261 nomenclature, 262 References, 263 8 Methanol to Lower Olefins and Methanol to Propylene 271 Yao Wang and Fei Wei 8.1 Background, 271 8.2 Catalysts, 272 8.3 Catalytic Reaction Mechanism, 273 8.3.1 HP Mechanism, 274 8.3.2 Dual‐Cycle Mechanism, 274 8.3.3 Complex Reactions, 275 8.4 Features of the Catalytic Process, 275 8.4.1 Autocatalytic Reactions, 275 8.4.2 Deactivation and Regeneration, 276 8.4.3 Exothermic Reactions, 278 8.5 Multiphase Reactors, 278 8.5.1 Fixed Bed Reactor, 279 8.5.2 Moving Bed Reactor, 280 8.5.3 Fluidized Bed Reactor, 281 8.5.4 Parallel or Series Connection Reactors, 284 8.6 Industrial Development, 286 8.6.1 Commercialization of MTO, 286 8.6.2 Commercialization of MTP, 288 References, 292 9 rector Technology for Methanol to aromatics 295 Weizhong Qian and Fei Wei 9.1 Background and Development History, 295 9.1.1 The Purpose of Developing Methanol to Aromatics Technology, 295 9.1.2 Comparison of MTA with Other Technologies Using Methanol as Feedstock, 297 9.2 Chemistry Bases of MTA, 298 9.3 Effect of Operating Conditions, 300 9.3.1 Effect of Temperature, 300 9.3.2 Partial Pressure, 302 9.3.3 Space Velocity of Methanol, 302 9.3.4 Pressure, 302 9.3.5 Deactivation of the Catalyst, 303 9.4 Reactor Technology of MTA, 304 9.4.1 Choice of MTA Reactor: Fixed Bed or Fluidized Bed, 304 9.4.2 MTA in Lab‐Scale Fluidized Bed Reactor and the Comparison in Reactors with Different Stages, 305 9.4.3 20 kt/a CFB Apparatus for MTA, 306 9.4.4 Pilot Plant Test of 30 kt/a FMTA System, 306 9.5 Comparison of MTA Reaction Technology with FCC and MTO System, 310 References, 311 x COnTEnTS 10 Natural Gas conversion 313 Wisarn Yenjaichon, Farzam Fotovat and John R. Grace 10.1 Introduction, 313 10.2 Reforming Reactions, 313 10.3 Sulfur and Chloride Removal, 314 10.4 Catalysts, 314 10.5 Chemical Kinetics, 315 10.6 Fixed Bed Reforming Reactors, 316 10.7 Shift Conversion Reactors, 317 10.7.1 High‐Temperature WGS, 317 10.7.2 Low‐Temperature WGS, 317 10.8 Pressure Swing Adsorption, 317 10.9 Steam Reforming of Higher Hydrocarbons, 318 10.10 Dry (Carbon Dioxide) Reforming, 318 10.11 Partial Oxidation (POX), 320 10.11.1 Homogeneous POX, 321 10.11.2 Catalytic Partial Oxidation, 321 10.12 Autothermal Reforming (ATR), 321 10.13 Tri‐Reforming, 321 10.14 Other Efforts to Improve SMR, 322 10.14.1 Fluidized Beds, 323 10.14.2 Permselective Membranes, 323 10.14.3 Sorbent‐Enhanced Reforming, 325 10.15 Conclusions, 326 References, 326 11 Multiphase reactors for Biomass Processing and Thermochemical conversions 331 Xiaotao T. Bi and Mohammad S. Masnadi 11.1 Introduction, 331 11.2 Biomass Feedstock Preparation, 332 11.2.1 Biomass Drying, 332 11.2.2 Biomass Torrefaction Treatment, 333 11.3 Biomass Pyrolysis, 336 11.3.1 Pyrolysis Principles and Reaction Kinetics, 336 11.3.2 Multiphase Reactors for Slow and Fast Pyrolysis, 338 11.3.3 Catalytic Pyrolysis of Biomass, 342 11.3.4 Biomass‐to‐Liquid Via Fast Pyrolysis, 342 11.4 Biomass Gasification, 343 11.4.1 Principles of Biomass Gasification, 343 11.4.2 Gasification Reactions, Mechanisms, and Models, 344 11.4.3 Catalytic Gasification of Biomass, 347 11.4.4 Multiphase Reactors for Gasification, 349 11.4.5 Biomass Gasification Reactor Modeling, 355 11.4.6 Downstream Gas Processing, 356 11.4.7 Technology Roadmap and Recent Market Developments, 357 11.5 Biomass Combustion, 359 11.5.1 Principles of Biomass Combustion, 359 11.5.2 Reaction Mechanisms and Kinetics, 360 11.5.3 Multiphase Reactors for Combustion, 361 11.5.4 Advanced Combustion Systems, 363 11.5.5 Agglomeration, Fouling, and Corrosion, 365 11.5.6 Future Technology Developments, 365 COnTEnTS xi 11.6 Challenges of Multiphase Reactors for Biomass Processing, 366 11.6.1 Fluidization of Irregular Biomass Particles, 366 11.6.2 Feeding/Conveying of Biomass, 366 11.6.3 Reactor Modeling, Simulation, and Scale‐Up, 367 11.6.4 Economics of Commercial Biomass Conversion Systems, 368 References, 369 12 chemical Looping Technology for fossil fuel conversion with In Situ cO control 377 2 Liang‐Shih Fan, Andrew Tong and Liang Zeng 12.1 Introduction, 377 12.1.1 Chemical Looping Concept, 377 12.1.2 Historical Development, 379 12.2 Oxygen Carrier Material, 381 12.2.1 Primary Material Selection, 381 12.2.2 Iron‐Based Oxygen Carrier Development, 382 12.3 Chemical Looping Reactor System Design, 384 12.3.1 Thermodynamic Analysis, 385 12.3.2 Kinetic Analysis, 388 12.3.3 Hydrodynamic Analysis, 392 12.4 Chemical Looping Technology Platform, 396 12.4.1 Syngas Chemical Looping Process, 397 12.4.2 Coal Direct Chemical Looping Process, 398 12.4.3 Shale Gas-to-Syngas Process, 399 12.5 Conclusion, 400 References, 401 INDex 405

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.