ebook img

Multiparameter Processes: An Introduction to Random Fields PDF

605 Pages·2002·4.305 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiparameter Processes: An Introduction to Random Fields

S M M pringer onographs in athematics Davar Khoshnevisan Multiparameter Processes An Introduction to Random Fields i Springer DavarKhoshnevisan DepartmentofMathematics UniversityofUtah SaltLakeCity,Ut84112-0090 [email protected] With12illustrations. MathematicsSubjectClassification(2000):60Gxx,60G60 LibraryofCongressCataloging-in-PublicationData Khoshnevisan,Davar. Multiparameterprocesses:anintroductiontorandomfields/DavarKhoshnevisan. p.cm.—(Springermonographsinmathematics) Includesbibliographicalreferencesandindex ISBN0-387-95459-7(alk.paper) 1.Randomfields. I.Title. II.Series. QA274.45.K582002 519.2′3—dc21 2002022927 Printedonacid-freepaper. 2002Springer-VerlagNewYork,Inc. All rights reserved. This work may not be translated or copied in whole or in part without the writtenpermissionofthepublisher(Springer-VerlagNewYork,Inc.,175FifthAvenue,NewYork, NY10010,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Use inconnection withany formof informationstorageand retrieval,electronic adaptation,computer software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if theyarenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornot theyaresubjecttoproprietaryrights. ManufacturingsupervisedbyJeromeBasma. Camera-readycopypreparedfromtheauthor’sLaTeXfiles. PrintedandboundbyEdwardsBrothers,Inc.,AnnArbor,MI. PrintedintheUnitedStatesofAmerica. 9 8 7 6 5 4 3 2 1 ISBN0-387-95459-7 SPIN10869448 Springer-Verlag NewYork Berlin Heidelberg AmemberofBertelsmannSpringerScience+BusinessMediaGmbH Preface Thisbookaimstoconstructageneralframeworkfortheanalysisofalarge familyofrandomfields,alsoknownasmultiparameterprocesses.Theneed for such a development was pointed out in Doob (1990, p. 47). Referring to the theory of one-parameter stochastic processes, Doob writes:1 Ourdefinitionofastochasticprocessishistoricallyconditioned andhasobviousdefects.Inthefirstplacethereisnomathemat- ical reason for restricting T to be a set of real numbers, and in fact interesting work has already been done in other cases. (Of course,theinterpretationoftastimemustthenbedropped.)In thesecondplacethereisnomathematicalreasonforrestricting the value assumed by the xt’s to be numbers. There are a number of compelling reasons for studying random fields, one of which is that, if and when possible, multiparameter processes are a natural extension of existing one-parameter processes. More exciting still arethevariousinteractionsbetweenthetheoryofmultiparameterprocesses andotherdisciplines,includingprobabilityitself.Forexample,inthisbook thereaderwilllearnofvariousconnectionstorealandfunctionalanalysis,a modicumofgrouptheory,andanalyticnumbertheory.Themultiparameter processes of this book also arise in applied contexts such as mathematical statistics (Pyke 1985), statistical mechanics (Kuroda and Manaka 1998), and brain data imaging (Cao and Worsley 1999). 1Heisreferringtoastochasticprocessoftheform(xt; t∈T). vi My writing philosophy has been to strike a balance between developing a reasonably general theory, while presenting applications and explicit cal- culations. This approach should set up the stage for further analysis and exploration of the subject, and make for a more lively approach. Thisbookisintwoparts.PartIisaboutthediscrete-timetheory.Italso contains results that allow for the transition from discrete-time processes to continuous-time processes. In particular, it develops abstract random variables, parts of the theory of Gaussian processes, and weak convergence for continuous stochastic processes. Part II contains the general theory of continuous-time processes. Special attention is paid to processes with con- tinuous trajectories, but some discontinuous processes will also be studied. In this part I will also discuss subjects such as potential theory for sev- eral Markov processes, the Brownian sheet, and some Gaussian processes. Parts I and II are influenced by the fundamental works of Doob, Cairoli, and Walsh. My goal has been to keep this book as self-contained as possible, in order to make it available to advanced graduate students in probability and analysis. To this I add that a more complete experience can only be gainedthroughsolvingmanyoftheproblemsthatarescatteredthroughout the body of the text. At times, these in-text exercises ask the student to check some technical detail. At other times, the student is encouraged to apply a recently introduced idea in a different context. More challenging exercises are offered at the end of each chapter. Many of the multiparameter results of this book do not seem to exist elsewhere in a pedagogic manner. There are also a number of new theo- remsthatappearhereforthefirsttime.Whenintroducingabetter-known subject (e.g., martingales or Markov chains), I have strived to construct the most informative proofs, rather than the shortest. This book would not exist had it not been for the extensive remarks, corrections, and support of R. Bass, J. Bertoin, K. Burdzy, R. Dalang, S. Ethier,L.Horva´th,S.Krone,O.L´evˆeque,T.Lewis,G.Milton,E.Nualart, T.Mountford,J.Pitman,Z.Shi,J.Walsh,andY.Xiao.Theireffortshave led to a much cleaner product. What errors remain are my own. I have en- joyedagreatdealoftechnicalsupportfromP.Bowman,N.Beebe,andthe editorialstaffofSpringer.TheNationalScienceFoundationandtheNorth Atlantic Treaty Organization have generously supported my work on ran- domfieldsovertheyears.Mysincerestgratitudegoestothemall.Finally,I wishtothankmydearestfriend,andmysourceofinspiration,IrinaGushin. ThisbookisdedicatedtothememoryofVictorGushin,andtotherecent arrival of Adrian V. Kh. Gushin. Davar Khoshnevisan, Salt Lake City, UT. March 2002 Contents Preface v List of Figures xv General Notation xvii I Discrete-Parameter Random Fields 1 1 Discrete-Parameter Martingales 3 1 One-Parameter Martingales . . . . . . . . . . . . . . . . . . 4 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 The Optional Stopping Theorem . . . . . . . . . . . 7 1.3 A Weak (1,1) Inequality . . . . . . . . . . . . . . . . 8 1.4 A Strong (p,p) Inequality . . . . . . . . . . . . . . . 9 1.5 The Case p=1 . . . . . . . . . . . . . . . . . . . . . 9 1.6 Upcrossing Inequalities . . . . . . . . . . . . . . . . 10 1.7 The Martingale Convergence Theorem . . . . . . . . 12 2 Orthomartingales . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Definitions and Examples . . . . . . . . . . . . . . . 16 2.2 Embedded Submartingales . . . . . . . . . . . . . . 18 2.3 Cairoli’s Strong (p,p) Inequality . . . . . . . . . . . 19 2.4 Another Maximal Inequality . . . . . . . . . . . . . 20 2.5 A Weak Maximal Inequality . . . . . . . . . . . . . . 22 viii Contents 2.6 Orthohistories . . . . . . . . . . . . . . . . . . . . . 22 2.7 Convergence Notions . . . . . . . . . . . . . . . . . . 24 2.8 Topological Convergence . . . . . . . . . . . . . . . . 26 2.9 Reversed Orthomartingales . . . . . . . . . . . . . . 30 3 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Marginal Filtrations . . . . . . . . . . . . . . . . . . 31 3.3 A Counterexample . . . . . . . . . . . . . . . . . . . 33 3.4 Commutation . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Martingales . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Conditional Independence . . . . . . . . . . . . . . . 38 4 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . 40 5 Notes on Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . 44 2 Two Applications in Analysis 47 1 Haar Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.1 The 1-Dimensional Haar System . . . . . . . . . . . 48 1.2 The N-Dimensional Haar System . . . . . . . . . . . 51 2 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.1 Lebesgue’s Differentiation Theorem. . . . . . . . . . 54 2.2 A Uniform Differentiation Theorem . . . . . . . . . 58 3 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . 61 4 Notes on Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . 63 3 Random Walks 65 1 One-Parameter Random Walks . . . . . . . . . . . . . . . . 66 1.1 Transition Operators . . . . . . . . . . . . . . . . . . 66 1.2 The Strong Markov Property . . . . . . . . . . . . . 69 1.3 Recurrence . . . . . . . . . . . . . . . . . . . . . . . 70 1.4 Classification of Recurrence . . . . . . . . . . . . . . 72 1.5 Transience. . . . . . . . . . . . . . . . . . . . . . . . 74 1.6 Recurrence of Possible Points . . . . . . . . . . . . . 75 1.7 Recurrence–Transience Dichotomy . . . . . . . . . . 78 2 Intersection Probabilities. . . . . . . . . . . . . . . . . . . . 80 2.1 Intersections of Two Walks . . . . . . . . . . . . . . 80 2.2 An Estimate for Two Walks . . . . . . . . . . . . . . 85 2.3 Intersections of Several Walks . . . . . . . . . . . . . 86 2.4 An Estimate for N Walks . . . . . . . . . . . . . . . 89 3 The Simple Random Walk . . . . . . . . . . . . . . . . . . . 89 3.1 Recurrence . . . . . . . . . . . . . . . . . . . . . . . 90 3.2 Intersections of Two Simple Walks . . . . . . . . . . 91 3.3 Three Simple Walks . . . . . . . . . . . . . . . . . . 93 3.4 Several Simple Walks . . . . . . . . . . . . . . . . . 97 4 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . 99 5 Notes on Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . 103 Contents ix 4 Multiparameter Walks 105 1 The Strong Law of Large Numbers . . . . . . . . . . . . . . 106 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 106 1.2 Commutation . . . . . . . . . . . . . . . . . . . . . . 107 1.3 A Reversed Orthomartingale . . . . . . . . . . . . . 109 1.4 Smythe’s Law of Large Numbers . . . . . . . . . . . 110 2 The Law of the Iterated Logarithm . . . . . . . . . . . . . . 112 2.1 The One-Parameter Gaussian Case . . . . . . . . . . 113 2.2 The General LIL . . . . . . . . . . . . . . . . . . . . 116 2.3 Summability . . . . . . . . . . . . . . . . . . . . . . 117 2.4 Dirichlet’s Divisor Lemma . . . . . . . . . . . . . . . 118 2.5 Truncation . . . . . . . . . . . . . . . . . . . . . . . 119 2.6 Bernstein’s Inequality . . . . . . . . . . . . . . . . . 121 2.7 Maximal Inequalities . . . . . . . . . . . . . . . . . . 123 2.8 A Number-Theoretic Estimate . . . . . . . . . . . . 125 2.9 Proof of the LIL: The Upper Bound . . . . . . . . . 127 2.10 A Moderate Deviations Estimate . . . . . . . . . . . 128 2.11 Proof of the LIL: The Lower Bound . . . . . . . . . 130 3 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . 132 4 Notes on Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . 135 5 Gaussian Random Variables 137 1 The Basic Construction . . . . . . . . . . . . . . . . . . . . 137 1.1 Gaussian Random Vectors . . . . . . . . . . . . . . . 137 1.2 Gaussian Processes . . . . . . . . . . . . . . . . . . . 140 1.3 White Noise. . . . . . . . . . . . . . . . . . . . . . . 142 1.4 The Isonormal Process . . . . . . . . . . . . . . . . . 144 1.5 The Brownian Sheet . . . . . . . . . . . . . . . . . . 147 2 Regularity Theory . . . . . . . . . . . . . . . . . . . . . . . 148 2.1 Totally Bounded Pseudometric Spaces . . . . . . . . 149 2.2 Modifications and Separability . . . . . . . . . . . . 153 2.3 Kolmogorov’s Continuity Theorem . . . . . . . . . . 158 2.4 Chaining . . . . . . . . . . . . . . . . . . . . . . . . 160 2.5 H¨older-Continuous Modifications . . . . . . . . . . . 165 2.6 The Entropy Integral. . . . . . . . . . . . . . . . . . 167 2.7 Dudley’s Theorem . . . . . . . . . . . . . . . . . . . 170 3 The Standard Brownian Sheet. . . . . . . . . . . . . . . . . 172 3.1 Entropy Estimate . . . . . . . . . . . . . . . . . . . 172 3.2 Modulus of Continuity . . . . . . . . . . . . . . . . . 173 4 Supplementary Exercises . . . . . . . . . . . . . . . . . . . . 175 5 Notes on Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 178 6 Limit Theorems 181 1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . 181 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 182

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.