Mircea Vasile Diudea Multi-Shell Polyhedral Clusters MirceaVasileDiudea DepartmentofChemistry FacultyofChemistryandChemicalEngineering Babes-BolyaiUniversity Cluj-Napoca,Romania ISSN1875-0745 ISSN1875-0737 (electronic) CarbonMaterials:ChemistryandPhysics ISBN978-3-319-64121-8 ISBN978-3-319-64123-2 (eBook) DOI10.1007/978-3-319-64123-2 LibraryofCongressControlNumber:2017951136 ©SpringerInternationalPublishingAG2018 ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Nanoworld is the worldseen at the size of 10(cid:1)9 m; searching matter at thisdepth startedsince1970whenEijiOsawahadenouncedtheconjecturethatthetruncated icosahedroncouldbeamolecule,latercalledC .Then,in1985,Kroto,Curl,and 60 SmalleygotspectralevidencethatC ,whichshowsasinglepeakin13C-NMR,isa 60 real molecule. They were awarded the Nobel Prize in 1995 for this historical discovery. Macroscopic synthesis of C came later, in 1990, by the work of 60 Kraetschmerandcollaborators.Iijimareportedin1991thesynthesisofnanotubes; the period after these pioneering discoveries is commonly called the “Nanoera.” Developmentofcomputersandtechnologyenabledresearchersandindustrytogo furtherinresearchandapplications,promotinganexplosivedevelopmentofelec- tronics, optoelectronics, telecommunications, education, etc. Thereafter, the most important event (for the actual book) was the recognition of quasi-crystals as ordered, nonperiodic matter, the class to which the multi-shell clusters belong. DanShehtmanwastheNoblePrizewinnerfortheseresultsin2011...thenthebook wasstartedtobewritten... Topologyisthemathematicalstudyofshapes;themulti-shellclustersconcerned hereinarereferredtoassetsofshapes,arranged,inanabstractspace,inincreasing rank (as Egon Schulte proposed in 1980), rather than in the geometrical higher dimensional space. Cluster models representing primary atomic arrangement are neededtounderstandtheactualstructureandthentheundergoingtransformations, both in concept and experimental realization and in the computational treatment. However, there is little reference to crystallographic entities, e.g., real crystal networksandquasi-crystals.Also,thisbookdoesnotprovideallpossiblestructures of a given set of restrictive conditions; it rather gives chosen, representative examples. This book about multi-shell clusters could be more inspiring for archi- tects or visual artists in making monumental, artistic works, by its aesthetic message. Thestructureofthisbookisasfollows: AnintroductiontotheChemicalGraphTheoryismadeinthefirstchapter.Itisa description through the eye of a chemist of the basic notions of Graph Theory: definitions,topologicalmatricesandindices,countingpolynomials,etc. Chapter2describessomeofthemostimportantoperationsonmapsthatenabled thedesignofthemulti-shellclusters,asisshowninthefollowingchapters. In Chap. 3, rigorous definitions in polyhedra and polytopes of higher rank are given with a view to helping in the effort of counting structural elements and naming and extracting mathematical and physicochemical properties of multi- shell clusters. Some examples of polytope realization are given at the end of this chapter. Chapter 4 deals with the complexity and methods of investigation and charac- terizationofmulti-shellclusters,suchascentralityindexcountedonlayermatrices and the ring signature index, calculated on rings around each vertex/atom of the cluster. Theory about these descriptors is given as well as case studies providing dataontopology,definedonconnectivityratherthangeometry. From Chaps. 5–9, the topological study is directed to multi-shell clusters clas- sifiedaccordingtothepointgroupsymmetryoftheparentPlatonicclusters,usedas seedsinthedesignofmorecomplexclusterswiththeaidofmapoperations. Chapter10speaksabout chiralmulti-tori,spongystructures,thecomplexityof whichisgivenbythehighgenussurfaceinwhichtheyareembedded. Chapter 11 opens a gate to the spongy hypercubes, developed on the Platonic solids.Thedesignedstructureswerecharacterizedbytopological(figure)counting andbyOmegaandClujcountingpolynomials. Finally,Chap.12providesaboundtotherealworldbyenergycomputation,in anattempttofindmulti-shellcluster(orcorrespondingnetworks)candidatestothe statusofrealchemical/mineralclusters. Chapters2,5–10,and12haveAtlassectionsthatdetailthediscussedstructures; the number of these figures is listed in separate files, in each chapter, while the figurenumberisassociatedwiththenameofclusterswithinallthetext,tables,and figuresincluded,foraneasieridentification. Thebookincludespersonalresearchresultsoftheauthor,inconnectionwithhis activity within the Topo Group Cluj, Romania. It is addressed to students and researchers in the interdisciplinary field of Chemistry, Physics, and Mathematics aswellastoarchitectsandvisualartists.Hin-filesofthestructuresillustratedinthis bookaredeposedonline,atwww.esmc.ro,availableonrequest. I was aided in this effort by my younger colleagues, Dr. Csaba L. Nagy and Dr. Atena Pirvan-Moldovan, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai”University,Cluj,Romania,withquantumchemicalandsymmetry calculation, figure design, and error checking, while writing the book, which I highlyappreciate.ManythanksareaddressedtoDr.AttilaBende(Molecularand Biomolecular Physics Department, National Institute for R&D of Isotopic and MolecularTechnologies,Cluj,Romania),Dr.BeataSzefler(DepartmentofPhys- icalChemistry,FacultyofPharmacy,CollegiumMedicum,NicolausCopernicus University, Bydgoszcz, Poland), Dr. Zahra Khalaj (Department of Physics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran), and Dr. Igor Baburin(TechnischeUniversita¨tDresden,TheoretischeChemie,Germany)fora fruitfulcollaboration. Cluj-Napoca,Romania MirceaVasileDiudea January22,2017 Contents 1 BasicChemicalGraphTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 BasicDefinitionsinGraphs. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 TopologicalMatricesandIndices. . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 AdjacencyMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 DistanceMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 DetourMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.4 CombinatorialMatrices. . . . . . . . . . . . . . . . . . . . . . . 8 1.2.5 WienerMatrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.6 ClujMatrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.7 Distance-ExtendedMatrices. . . . . . . . . . . . . . . . . . . . 11 1.2.8 WalkMatrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.9 ReciprocalMatrices. . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.10 LayerandShellMatrices. . . . . . . . . . . . . . . . . . . . . . 14 1.3 TopologicalSymmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 OperationsonMaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 Duald. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Medialm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Truncationt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 PolygonalMappingpn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Snubs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 Leapfrogl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7 Quadruplingq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.8 Septuplingsn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 DefinitionsinPolytopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Polyhedra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 n-DimensionalStructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 AbstractStructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 Posets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 VertexFigure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.3 AbstractPolytope. .. . . . .. . . . .. . . . .. . . . .. . . . .. 46 3.4 PolytopeRealization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 P-CenteredClusters. . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Cell-in-CellClusters. . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.3 24-CellandItsDerivatives. . . . . . . . . . . . . . . . . . . . . 51 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 SymmetryandComplexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 EulerCharacteristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 TopologicalSymmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 CentralityIndex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 RingSignatureIndex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4.1 RingSignatureinaTranslationalNetwork. . . . . . . . . 61 4.4.2 RingSignatureinSpongyStructuresofHigherRank. . . 63 4.4.3 RingSignatureinSpongyHypercubes. . . . . . . . . . . . 66 4.4.4 TruncationOperation. . . . . . . . . . . . . . . . . . . . . . . . . 66 4.5 PairsofMapOperation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 SmallIcosahedralClusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1 SmallCages:SourceofComplexClusters. . . . . . . . . . . . . . . . 77 5.2 TruncatedMPIcosahedralClusters. . . . . . . . . . . . . . . . . . . . . 78 5.3 ClustersbyMedialOperation. . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 ClustersofHigherRank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 LargeIcosahedralClusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.1 SmallComplexClusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2 IcosahedralClustersDerivedfromtheC Seed. . . . . . . . . . . . 127 45 6.3 ClustersofDodecahedralTopology. . . . . . . . . . . . . . . . . . . . . 132 6.4 ClustersofIcosahedralTopology. .. . . . . . . . . .. . . . . . . . . .. 133 6.5 RhombDecoratedClusters. . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7 ClustersofOctahedralSymmetry. . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.1 SmallClustersasSeedsforComplexStructures. . . . . . . . . . . . 187 7.2 ClustersDecoratedbyOctahedra. . . . . . . . . . . . . . . . . . . . . . . 188 7.3 ClustersDecoratedbyDodecahedra. . . . . . . . . . . . . . . . . . . . . 189 7.4 RhombDecoratedOctahedralClusters. . . . . . . . . . . . . . . . . . . 190 7.5 CubicNetTransforming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 8 TetrahedralClusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 8.1 SmallTetrahedralClusters. . . . . . . . . . . . . . . . . . . . . . . . . . . 247 8.2 TetrahedralClustersofHigherRank. . . . . . . . . . . . . . . . . . . . 248 8.3 TetrahedralClustersDerivedFromAda20. . . . . . . . . . . . . . . . 248 8.4 TetrahedralHyper-structuresDecoratedwithOnly Dodecahedra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 9 C RelatedClusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 60 9.1 StructuresDerivedfromtheClusterP32@dC .33. . . . . . . . . . 281 60 9.2 StellatedClusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 9.3 C RelatedStructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 750 9.3.1 DualsofC andRelatedStructures. . . . .. . . .. . . .. 287 750 9.3.2 MedialsofC andRelatedClusters. . . . . . . . . . . . . 287 750 9.3.3 TruncatedC andRelatedClusters. . . . . . . . . . . . . . 290 750 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 10 ChiralMulti-tori. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 10.1 DesignofChiralMulti-tori. . . . . . . . . . . . . . . . . . . . . . . . . . . 335 10.2 DodecahedronRelatedStructures. . . . . . . . . . . . . . . . . . . . . . 338 10.3 CubeRelatedStructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 10.4 TetrahedronRelatedStructures. . . . . . . . . . . . . . . . . . . . . . . . 341 10.5 C RelatedStructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 60 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 11 SpongyHypercubes.. . . .. . . .. . . .. . . .. . . .. . .. . . .. . . .. . . .. 363 11.1 SimpleToroidalHypercubes. . . . . . . . . . . . . . . . . . . . . . . . . . 363 11.2 ComplexToroidalHypercubes. . . . . . . . . . . . . . . . . . . . . . . . 365 11.3 TubularHypercubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 11.4 SpongyHypercubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 11.5 TruncationofHypercube. . . .. . . .. . . .. . . .. . . .. . . .. . . .. 370 11.6 CountingPolynomialsinHypercubes. . .. . . .. . . .. . . .. . . .. 372 11.6.1 OmegaPolynomial. . . . . . . . . . . . . . . . . . . . . . . . . . 372 11.6.2 ClujPolynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 12 EnergeticsofMulti-shellClusters. . . . . . . . . . . . . . . . . . . . . . . . . . 385 12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 12.2 C Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 20 12.3 Hyper-graphenesbyD Substructures. . . . . . . . . . . . . . . . . . . 389 5 12.4 Hyper-graphenesbyC Units. . . . . . . . . . . . . . . . . . . . . . . . . 389 60 12.5 C AggregateswithTetrahedralandIcosahedralSymmetry. . . 393 60 12.6 C Networkby[2+2]Cycloaddition. . . . . . . . . . . . . . . . . . . . 396 60 12.7 ComputationalMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 Abbreviations d Dual l Leapfrog m Medial t Truncated CO Cuboctahedron DCO Dualcuboctahedron ID Icosidodecahedron hP Halfpolyhedron MC Medialcube LDCO Leapfrog(ofdual)ofcuboctahedron MDCO Medial(ofdual)ofcuboctahedron MMC Medial(ofmedial)ofcube RCO Rhombicuboctahedron RID Rhombicosidodecahedron SC Snubcube SD Snubdodecahedron TC Truncatecube TCO Truncatecuboctahedron TID Truncateicosidodecahedron TMC Truncate(ofmedial)ofcube TO Truncateoctahedron TT Truncatetetrahedron XAYb FigureatthebottomofthemainfigureXAY Chapter 1 Basic Chemical Graph Theory Graph Theory applied in Chemistry is called Chemical Graph Theory. This inter- disciplinarysciencetakesproblems(likeisomerenumeration,structureelucidation, etc.) from Chemistry and solve them by Mathematics (using tools from Graph Theory,SetTheoryorCombinatorics),thusinfluencingbothChemistryandMath- ematics.Partitioningofamolecularpropertyandreconstructingitfromfragmental contributions is one of the main tasks of this theory. For further discussion, some basicdefinitionsinGraphTheoryareneeded. 1.1 Basic Definitions in Graphs AgraphG(V,E)isapairoftwosets,VandE,V¼V(G)beingafinitenonemptyset and E ¼ E(G) a binary relation defined on V (Harary 1969). A graph can be visualized by representing the elements of V by points/vertices and joining pairs ofvertices(i,j)byanedge/bondifandonlyif(i,j)2E(G).Thenumberofvertices inGequalsthecardinalityn¼jV(G)jofthisset.Thetermgraphwasintroducedby Sylvester (1874). There is a variety of graphs, some of them being mentioned below. Apathgraphisanon-branchedchain.Atreeisabranchedstructure.Astarisa setofverticesjoinedinacommonvertex.Acycleisachainwhichstartsandendsin oneandthesamevertex(Fig.1.1). A complete graph K is the graph of with any two vertices are adjacent. The n number of edges in such a graph is n(n(cid:2)1)/2. Fig. 1.2 illustrates the complete graphswithn¼1–5. Inabipartitegraph,thevertexsetVcanbepartitionedintwodisjointsubsets: V [V ¼V(G); V \V ¼∅ such that any edge (i,j)2E(G) joins V with V 1 2 1 2 1 2 (Harary 1969; Trinajstic´ 1983; Diudea 2010). A graph is bipartite if and only if allitscyclesareeven(Ionescu1973).Ifanyvertexi2V isadjacenttoanyvertex 1 j2V thenGisacompletebipartitegraph,K ,withm¼|V |andn¼|V |andthe 2 m,n 1 2