ebook img

Multi-robot task allocation using affect PDF

128 Pages·2015·1.71 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-robot task allocation using affect

UUnniivveerrssiittyy ooff SSoouutthh FFlloorriiddaa DDiiggiittaall CCoommmmoonnss @@ UUnniivveerrssiittyy ooff SSoouutthh FFlloorriiddaa USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 8-18-2004 MMuullttii--RRoobboott TTaasskk AAllllooccaattiioonn UUssiinngg AAffffeecctt Aaron Gage University of South Florida Follow this and additional works at: https://digitalcommons.usf.edu/etd Part of the American Studies Commons SScchhoollaarr CCoommmmoonnss CCiittaattiioonn Gage, Aaron, "Multi-Robot Task Allocation Using Affect" (2004). USF Tampa Graduate Theses and Dissertations. https://digitalcommons.usf.edu/etd/1042 This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more information, please contact [email protected]. Multi-RobotTaskAllocationUsingAffect by AaronGage Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy DepartmentofComputerScienceandEngineering CollegeofEngineering UniversityofSouthFlorida MajorProfessor:RobinMurphy,Ph.D. KimonValavanis,Ph.D. LarryHall,Ph.D. RajivDubey,Ph.D. DateofApproval: August18,2004 Keywords: robotics,multi-agents,recruitment,emotions (cid:13)c Copyright2004,AaronGage Dedication Thisworkisdedicatedtothefamilyandfriendswhosesupportmadeitpossible. Acknowledgments PortionsofthisworkweresupportedbyONRGrantN00014-03-1-0786andDOEGrant DE-FG02-01ER45904. TheauthorwouldalsoliketothankRobinMurphyforherguidanceandsupport throughoutthedevelopmentofthisthesis;MiguelLabradorforpointingoutMarkovmodelsforwireless networklosses;andMattLongformakingtheunderlyingSFXrobotarchitectureworkjustintimefor simulationsandrealrobottests. TableofContents ListofTables iii ListofFigures v Abstract vi ChapterOne Introduction 1 1.1 Multi-RobotTaskAllocation 1 1.2 MotivatingExample 3 1.3 ResearchQuestion 6 1.4 WhyUseAffect? 6 1.5 CommunicationsChallenge 8 1.6 TheNeedforaFitnessFunction 10 1.7 Contributions 10 1.7.1 ArtificialIntelligence 10 1.7.2 Robotics 11 1.7.3 CognitivePsychology 12 1.8 OrganizationofThesis 12 ChapterTwo RelatedWork 14 2.1 Multi-RobotTaskAllocation 15 2.1.1 Motivation-based: ALLIANCE 15 2.1.1.1 OtherMotivation-basedAllocationResearch 20 2.1.2 Auctions: MURDOCH 20 2.1.2.1 OtherAuction-basedApproaches 23 2.1.2.2 UtilityMetrics 24 2.1.3 OtherApproaches 24 2.2 DistributedSensing 26 2.3 EmotionsandAffectiveComputing 30 2.3.1 EmotionsinRobots 30 2.3.2 OCCModelofEmotions 31 2.4 FoundationofApproach 34 2.5 Summary 34 ChapterThree Approach 38 3.1 RobustCommunicationProtocol 38 3.2 FormalDescriptionofAffectiveRecruitment 41 3.3 MultivariateMetricEvaluationFunctions 46 3.4 Summary 48 i ChapterFour Experiments 51 4.1 ExperimentalDesign 52 4.1.1 Scenario 52 4.1.2 RecruitmentStrategies 54 4.2 ExperimentalSimulations 55 4.2.1 EffectsofTeamSize 55 4.2.1.1 StatisticalAnalysis 55 4.2.1.2 ResultsforNumberofMessagesMetric 57 4.2.1.3 ResultsforAverageWaitTimeMetric 57 4.2.1.4 SummaryofTeamSizeSimulations 62 4.2.2 EffectsofCommunicationLoss 63 4.2.2.1 StatisticalAnalysis 63 4.2.2.2 ResultsforNumberofMessagesMetric 64 4.2.2.3 ResultsforAverageWaitTimeMetric 64 4.2.2.4 SummaryofCommunicationLossSimulations 64 4.2.3 BroadcastversusUnicastMessaging 69 4.2.4 IllustrativeUseCases 70 4.2.5 FairnessofRecruitment 71 4.3 RobotImplementation 73 4.3.1 RestrictedScenario 73 4.3.2 SFXImplementation 73 4.3.3 RobotTrials 75 4.4 Summary 75 ChapterFive Discussion 80 5.1 LimitationsofExperiments 80 5.2 ComparisontoExistingResults 81 5.3 ParametersandFitnessMetrics 83 5.3.1 FitnessFunction 83 5.3.2 SHAMEAccrualFunction 83 5.3.3 SHAMEDecayFunction 84 5.4 Contributions 85 5.4.1 ValidatesApplicationofEmotions 85 5.4.2 ReducedCommunicationOverheadandBetterScaling 85 5.4.3 SuperiorSolutionQuality 86 5.4.4 DemonstratedRobustness 86 5.4.5 HandlesHeterogeneity 86 5.4.6 FairnessofAllocation 87 5.5 Summary 87 ChapterSix SummaryandFutureWork 89 6.1 SummaryofThesis 89 6.1.1 Contributions 91 6.2 FutureWork 93 References 95 Appendices 102 AppendixA:RawSimulationResults 103 AbouttheAuthor EndPage ii ListofTables Table1. RelatedMulti-robotTaskAllocationWorkAccordingToResults. 16 Table2. TestDomainsForALLIANCE. 19 Table3. Mean µ And Standard Deviation σ Of The Elapsed Time, In Seconds, For Successful PushingTrialsInEachOfFourBoxPushingExperimentsForMURDOCH. 21 Table4. DistributedSensingLiterature. 27 Table5. SummaryOfLiteratureApplyingEmotionsToRobots. 30 Table6. Standards-basedEmotions(AlsoCalledAttributionEmotions). 33 Table7. Standards-basedEmotionsInWhichAnAgentHasANegativeReactionToItsOwnAc- tions. 33 Table8. RecruitmentProtocolMessagesAndParameters. 39 Table9. SummaryOfTheNotationUsedInAffectiveRecruitment. 42 Table10. AverageNumberOfMessagesTransmittedForEachStrategyForVaryingTeamSize. 58 Table11. PairwiseConfidenceIntervalsForAverageNumberOfMessagesForVaryingTeamSize. 59 Table12. AverageTime,InSeconds,TheUAVSpentWaitingAccordingToTeamSize. 59 Table13. PairwiseConfidenceIntervalsForAverageTimeUAVSpentWaitingAccordingToTeam Size. 61 Table14. AverageNumberOfMessagesTransmittedForEachRecruitmentStrategyAccordingTo NetworkLossRates. 65 Table15. PairwiseConfidenceIntervalsForAverageNumberOfMessagesForEachMessageLoss Rate. 67 Table16. AverageTime,InSeconds,TheUAVSpentWaitingAccordingToRandomMessageLoss Rate. 68 Table17. PairwiseConfidenceIntervalsForAverageWaitTimeForEachMessageLossRate. 69 Table18. AverageNumberOfMessagesTransmittedAccordingToMessagingType. 70 Table19. BiasOfEachRecruitmentStrategy. 72 Table20. NumberOfTimesEachRobotWasRecruitedUsingAffectiveRecruitment. 103 iii Table21. NumberOfTimesEachRobotWasRecruitedUsingAffective1/D2Recruitment. 104 Table22. NumberOfTimesEachRobotWasRecruitedUsingGreedyRecruitment. 104 Table23. NumberOfTimesEachRobotWasRecruitedUsingRandomRecruitment. 104 Table24. RawDataForTimeMetric,4Robots,And0%CommunicationFailureRate. 105 Table25. Raw Data For Number Of Messages Metric, 4 Robots, And 0% Communication Failure Rate. 106 Table26. RawDataForTimeMetric,8Robots,And0%CommunicationFailureRate. 107 Table27. Raw Data For Number Of Messages Metric, 8 Robots, And 0% Communication Failure Rate. 108 Table28. RawDataForTimeMetric,13Robots,And0%CommunicationFailureRate. 109 Table29. RawDataForNumberOfMessagesMetric,13Robots,And0%CommunicationFailure Rate. 110 Table30. RawDataForTimeMetric,23Robots,And0%CommunicationFailureRate. 111 Table31. RawDataForNumberOfMessagesMetric,23Robots,And0%CommunicationFailure Rate. 112 Table32. RawDataForTimeMetric,53Robots,And0%CommunicationFailureRate. 113 Table33. RawDataForNumberOfMessagesMetric,53Robots,And0%CommunicationFailure Rate. 114 Table34. RawDataForTimeMetric,13Robots,And5%CommunicationFailureRate. 115 Table35. RawDataForNumberOfMessagesMetric,13Robots,And5%CommunicationFailure Rate. 115 Table36. RawDataForTimeMetric,13Robots,And10%CommunicationFailureRate. 116 Table37. RawDataForNumberOfMessagesMetric,13Robots,And10%CommunicationFailure Rate. 116 Table38. RawDataForTimeMetric,13Robots,And25%CommunicationFailureRate. 117 Table39. RawDataForNumberOfMessagesMetric,13Robots,And25%CommunicationFailure Rate. 117 iv ListofFigures Figure1. UnmannedAerialVehiclesForTheDeminingTask. 3 Figure2. UnmannedGroundVehiclesUsedInTheDeminingTask. 4 Figure3. UGVAndUAVTogetherInTheDeminingTask. 4 Figure4. GraphOfTheCommunicationsUseByMURDOCH. 22 Figure5. TheOCCModel. 32 Figure6. RecruitmentProtocolInTermsOfTheMessagesSentBetweenRobots. 40 Figure7. ExampleOfAverageBestFitnessBeingUsedToGenerateReplies. 45 Figure8. UserInterfaceForRecruitmentSimulator. 53 Figure9. Histogram Of The Number Of Messages Transmitted Using The Affective Recruitment StrategyForTeamSize13. 56 Figure10. MessagesTransmittedAtDifferentTeamSizes. 58 Figure11. Box Plots Of The Simulation Results For The Communication Overhead According To TeamSize. 60 Figure12. TotalWaitTimeAtDifferentTeamSizes. 65 Figure13. BoxPlotsOfTheSimulationResultsForTheWaitTimeMetricAccordingToTeamSize. 66 Figure14. MessagesTransmittedAtDifferentNetworkFailureRates. 67 Figure15. WaitTimesAtDifferentMessageLossRates. 68 Figure16. SimplifiedOverviewOfTheSFXArchitecture. 74 Figure17. OperatorUserInterfaceForRealRobotTests. 76 Figure18. OperatorUserInterfaceForRealRobotTests. 76 Figure19. OperatorUserInterfaceForRealRobotTests. 77 Figure20. UGVArrivingAtASimulatedMine. 77 v Multi-RobotTaskAllocationUsingAffect AaronGage ABSTRACT Mobilerobotsarebeingusedforanincreasingarrayoftasks,frommilitaryreconnaissancetoplanetary explorationtourbansearchandrescue. Asrobotsaredeployedinincreasinglycomplexdomains,teamsare calledupontoperformtasksthatexceedthecapabilitiesofanyparticularrobot. Thus,itbecomesnecessary forrobotstocooperate,suchthatonerobotcanrecruitanothertojointlyperformatask. Thoughtechniques existtoallocaterobotstotasks,eitherthecommunicationoverheadthatthesetechniquesrequireprevents themfromscalinguptolargeteams,orassumptionsaremadethatlimitthemtosimpledomains. This dissertationpresentsanovelemotion-basedrecruitmentapproachtothemulti-robottaskallocationproblem. Thisapproachrequireslesscommunicationbandwidththancomparablemethods,enablingittoscaleto largeteamsizes,andmakingitappropriateforlow-powerorstealthapplications. Affectiverecruitmentis tolerantofunreliablecommunicationschannels,andcanfindbettersolutionsthansimplegreedyschedulers (basedonexperimentalmetricsofthetimenecessarytocompleterecruitmentandthetotalnumberof messagestransmitted). Experimentalresultsinasimulatedmine-detectiontaskshowthataffective recruitmentsucceedswithnetworkfailureratesupto25%,andrequires32%fewertransmissionscompared toexistingmethodsonaverage. Affectiverecruitmentalsoscalesbetterwithteamsize,requiringupto61% fewertransmissionsthanagreedyinstantaneousschedulerthathasanO(n)communicationscomplexity. vi

Description:
land mines, search and rescue, map building, and foraging, it may be necessary to use a . The need for a fitness function is motivated in Section 1.6.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.