ebook img

Multi-resolution Image Fusion in Remote Sensing PDF

255 Pages·2019·7.237 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-resolution Image Fusion in Remote Sensing

Multi-resolution Image Fusion in Remote Sensing Thetextoffersdiscussionontoolsandtechniquesofmulti-resolutionimagefusion with necessary mathematical background. It covers important multi-resolution fusionconceptsalongwithstate-of-the-artmethodsincludingsuper-resolutionand multistageguidedfilters. Itincludesin-depthanalysisondegradationestimation, GaborpriorandMarkovRandomField(MRF)prior.Theuseofedge-preserving filters in multi-resolution fusion is highlighted. The techniques of compressive sensing and super-resolution are explained for the benefit of readers. Fusion methodsarepresentedusingspatialandtransformdomainsinadditiontomodel based fusion approaches. Real life applications and plenty of multi-resolution imagesareprovidedinthetextforenhancedlearning. ManjunathV.JoshiisaProfessoratDhirubhaiAmbaniInstituteofInformation and Communication Technology (DA-IICT), Gandhinagar, India. He has been involved in active research in the areas of computer vision, machine learning, and cognitive radio. He has co-authored two books entitled Motion-Free Super-Resolution and Digital Heritage Reconstruction using Super-Resolution andInpainting. KishorP.UplaisanAssistantProfessoratS.V.NationalInstituteofTechnology (SVNIT), Surat, India. He has 14 years of teaching experience. His areas of interest include signal and image processing, machine learning, multi-spectral andhyper-spectralimageanalysis. Multi-resolution Image Fusion in Remote Sensing Manjunath V. Joshi Kishor P. Upla UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314to321,3rdFloor,PlotNo.3,SplendorForum,JasolaDistrictCentre,NewDelhi110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle: www.cambridge.org/9781108475129 © CambridgeUniversityPress2019 Thispublicationisincopyright. Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedinIndia AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-108-47512-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. To Smita,NidhiandNinad —MVJ Dipika,TakshandTithi —KPU Contents ListofFigures xi ListofTables xv Preface xvii Acknowledgments xix 1 Introduction 1 1.1 CharacteristicsofRemotelySensedImagery 3 1.1.1 Multi-spectralimages 8 1.1.2 Panchromaticimage 10 1.1.3 Hyper-spectralimages 12 1.2 LowSpatialResolutionImaging 14 1.3 ImageFusioninRemotelySensedImages 17 1.4 Multi-resolutionImageFusion: AnIll-posedInverseProblem 18 1.5 IndianRemoteSensingSatellites 20 1.6 ApplicationsofImageFusion 22 1.7 Motivation 25 1.8 OrganizationoftheBook 25 viii Contents 2 LiteratureReview 27 2.1 ProjectionSubstitutionBasedTechniques 29 2.2 Multi-resolutionBasedTechniques 34 2.3 ModelBasedFusionApproaches 41 2.4 Hyper-spectralSharpeningMethods 48 2.5 Conclusion 50 3 ImageFusionUsingDifferentEdge-preservingFilters 52 3.1 RelatedWork 53 3.2 FusionUsingMultistageGuidedFilter(MGF) 54 3.2.1 Multistageguidedfilter(MGF) 55 3.2.2 Proposedapproachusingguidedfilter 57 3.3 FusionApproachUsingDifferenceofGaussians(DoGs) 59 3.3.1 DifferenceofGaussians(DoGs) 60 3.3.2 ProposedapproachusingDoGs 61 3.4 ExperimentalIllustrations 63 3.4.1 Experimentations: Ikonos-2dataset 67 3.4.2 Experimentations: Quickbirddataset 71 3.4.3 Experimentations: Worldview-2dataset 74 3.4.4 Computationalcomplexity 78 3.5 Conclusion 78 4 ImageFusion: ModelBasedApproachwithDegradation Estimation 80 4.1 PreviousWorks 81 4.2 DescriptionoftheProposedApproachUsingBlockSchematic 83 4.3 Background: ContourletTransform(CT) 85 4.4 ContourletTransformBasedInitialApproximation 85 4.5 ForwardModelandDegradationEstimation 88 4.6 MRFPriorModel 91 4.7 MAPEstimationandOptimizationProcess 94 4.7.1 MAPestimation 94 4.7.2 Optimizationprocess 95 Contents ix 4.8 Experimentations 96 4.8.1 Effectofdecimationmatrixcoefficientsonfusion 100 4.8.2 EffectofMRFparameterg onfusion 102 m 4.8.3 Fusionresultsfordegradeddataset: Ikonos-2 103 4.8.4 Fusionresultsfordegradeddataset: Quickbird 112 4.8.5 Fusionresultsfordegradeddataset: Worldview-2 120 4.8.6 Fusionresultsforun-degraded(original)datasets: Ikonos-2,QuickbirdandWorldview-2 126 4.8.7 Spectraldistortionatedgepixels 133 4.8.8 Computationaltime 137 4.9 Conclusion 139 5 UseofSelf-similarityandGaborPrior 140 5.1 RelatedWork 141 5.2 BlockSchematicoftheProposedMethod 143 5.3 InitialHRApproximation 144 5.4 LRMSImageFormationModelandDegradationMatrix Estimation 150 5.5 RegularizationUsingGaborandMRFPriors 152 5.5.1 Optimizationprocess 155 5.6 ExperimentalResults 156 5.6.1 Experimentalsetup 158 5.6.2 Experimentalresultsondegradedandun-degraded Ikonos-2datasets 159 5.6.3 Experimentalresultsondegradedandun-degraded Quickbirddatasets 164 5.6.4 Experimentalresultsondegradedandun-degraded Worldview-2datasets 169 5.6.5 ComparisonoffusionresultswithCSandTV basedapproaches 174 5.6.6 Computationcomplexity 178 5.7 Conclusion 179

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.