ebook img

Multi-objective Optimization Problems. Concepts and Self-adaptive Parameters with Mathematical and Engineering Applications PDF

161 Pages·2017·6.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-objective Optimization Problems. Concepts and Self-adaptive Parameters with Mathematical and Engineering Applications

Fran Sérgio Lobato • Valder Steffen Jr. Multi-Objective Optimization Problems Concepts and Self-Adaptive Parameters with Mathematical and Engineering Applications 123 FranSérgioLobato ValderSteffenJr. SchoolofChemicalEngineering SchoolofMechanicalEngineering FederalUniversityofUberlândia FederalUniversityofUberlândia Uberlândia-Brazil Uberlândia-Brazil ISSN2191-8198 ISSN2191-8201 (electronic) SpringerBriefsinMathematics ISBN978-3-319-58564-2 ISBN978-3-319-58565-9 (eBook) DOI10.1007/978-3-319-58565-9 LibraryofCongressControlNumber:2017940795 ©TheAuthor(s)2017 ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Naturally, real-world problems involve the simultaneous optimization of two or more (often-conflicting) objectives, called multi-objective optimization problems (MOOP).Thesolutionofsuchproblemsisdifferentfromthatofasingle-objective optimization one. The main difference is that the solution of multi-objective optimization problems is represented by a curve (surface) that contains various points, which have all the same importance from the mathematical point of view. Traditionally, the treatment of such problems is done by transforming the original MOOP into a single-objective problem. These methods follow a preference-based approach, in which a relative preference vector is used to scalarize multiple objectives.Sinceclassicalsearchingandoptimizationmethodsuseapoint-by-point approachsothatthesolutionissuccessivelymodified,theoutcomeofthisclassical optimizationmethodisasingleoptimizedsolution.Ontheotherhand,evolutionary algorithms(EA)canfindmultipleoptimalsolutionsinonesinglesimulationrundue to their population-based search approach. Thus, EA are ideally suited for multi- objectiveoptimizationproblems. AmongthevariousexistingEA,wecancitethedifferentialevolution(DE).The crucial idea behind DE is the scheme used for generating trial parameter vectors. DEaddstheweighteddifferencebetweentwopopulationvectorstoathirdvector. The key control parameters for the DE are the following: the population size, the crossoverprobability,theperturbationrate,andthestrategyconsideredtogenerate potentialcandidates. Inthecontextofmulti-objectiveoptimization,theDEparametersareconsidered constant during the evolutionary process. This aspect simplifies the algorithm, but representsaconstraintthatdoesnotfollowthebiologicalevolutionfoundinnature. Thenaturalphenomenonincludescontinuousvariationinthenumberofindividuals, which increases when there are highly fitted individuals and abundant resources, and decreases otherwise. It may be beneficial to expand the population in early generations when the phenotype diversity is high. However, the population can be contracted when the unification of the individuals in terms of structure and fitnessnolongerjustifiesthemaintenanceofalargepopulationthatleadstohigher computationalcosts.Thisaspectofferstotheindividualstheopportunitytoexplore the design space accordingly. On the other hand, from the optimization point of view,intheendoftheevolutionaryprocess,thenaturaltendencyofthepopulation isbecominghomogeneous,whichimpliesunnecessaryevaluationsoftheobjective functionand,consequently,theincreaseofcomputationalcost,whenthepopulation size is kept constant. In addition, the dynamic update of the required parameters such as population size, crossover parameter, and perturbation rate can accelerate theconvergencerateandavoidlocalminima. In this contribution, the self-adaptive multi-objective optimization differential evolution (SA-MODE) algorithm is proposed in order to reduce the number of evaluations of the objective function and update dynamically the DE parameters during the evolutionary process. In this strategy, the population size is updated dynamicallybyusingtheconceptofconvergenceratetoevaluatethehomogeneity ofthepopulation,andtheotherparameters(crossoverprobabilityandperturbation rate) are dynamically updated by using the concept of population variance. The proposedmethodologyisthenappliedbothtomathematicalfunctionswithdifferent levelsofcomplexityandtoengineeringsystemdesign.Amongtheseapplications, we can cite some test cases in the following areas: (1) cantilevered beam design; (2)machinabilityofstainlesssteel;(3)optimizationofhydrocycloneperformance; (4)alkylationprocessoptimization;(5)batchstirredtankreactor;(6)crystallization process; (7) rotary dryers; and (8) rotor-dynamics design. The results obtained by usingSA-MODEarecomparedwiththoseobtainedbyotherevolutionarystrategies. Uberlândia,Brazil FranSérgioLobato ValderSteffenJr. Contents 1 Introduction .................................................................. 1 References..................................................................... 4 PartI BasicConcepts 2 Multi-objectiveOptimizationProblem.................................... 9 2.1 Introduction............................................................ 9 2.2 BasicConceptsandDefinitions....................................... 11 2.3 OptimalityConditions................................................. 17 2.4 MetricsforConvergenceandDiversity............................... 19 2.4.1 ErrorRate(ER)................................................ 19 2.4.2 ConvergenceMetric(‡)...................................... 19 2.4.3 GenerationalDistance(GD) .................................. 19 2.4.4 Spreading(Spc)................................................ 20 2.4.5 NumberofNiches(NC)....................................... 20 2.4.6 DiversityMetric((cid:2)) .......................................... 20 2.5 MethodologiestoSolvetheMOOP................................... 21 2.5.1 TypeofApproach ............................................. 21 2.5.2 ProblemFormulation.......................................... 22 2.6 Summary............................................................... 22 References..................................................................... 22 3 TreatmentofMulti-objectiveOptimizationProblem.................... 25 3.1 ClassicalAggregationMethods....................................... 26 3.1.1 WeightedSumMethod........................................ 27 3.1.2 "-ConstraintMethod .......................................... 29 3.1.3 GoalProgrammingMethod................................... 30 3.1.4 HierarchicalOptimizationMethod........................... 30 3.1.5 CompromiseOptimizationMethod .......................... 31 3.2 DeterministicandNon-DeterministicMethods...................... 31 3.2.1 DeterministicMethods........................................ 32 3.2.2 Non-DeterministicMethods .................................. 33 3.3 HandlingtheConstraints.............................................. 36 3.3.1 PenaltyFunctionsMethods................................... 36 3.3.2 InteriorPenaltyFunctionMethod ............................ 36 3.3.3 ExteriorPenaltyFunctionMethod............................ 37 3.3.4 AugmentedLagrangeMultiplierMethod.................... 37 3.3.5 DeathPenaltyMethod......................................... 38 3.3.6 MethodsBasedonthePreservationofViableSolutions .... 38 3.4 HeuristicMethodsAssociatedwithDominanceConcept ........... 38 3.4.1 Vector-EvaluatedGeneticAlgorithm......................... 39 3.4.2 Multi-objectiveGeneticAlgorithm........................... 39 3.4.3 Niched-ParetoGeneticAlgorithm............................ 40 3.4.4 Non-dominatedSortingGeneticAlgorithmIandII......... 40 3.4.5 StrengthParetoEvolutionaryAlgorithmIandII............ 40 3.4.6 Multi-objectiveOptimizationDifferentialEvolution........ 41 3.4.7 Multi-objectiveOptimizationBio-InspiredAlgorithm...... 41 3.5 Summary............................................................... 42 References..................................................................... 42 PartII Methodology 4 Self-adaptiveMulti-objectiveOptimizationDifferentialEvolution.... 47 4.1 DifferentialEvolution:ABriefReview .............................. 48 4.2 Multi-objectiveDifferentialEvolution:AReview................... 50 4.3 Self-adaptiveParameters:Motivation ................................ 53 4.4 Self-adaptiveMulti-objectiveOptimizationDifferential Evolution............................................................... 59 4.4.1 UpdatingofthePopulationSize(IntegralOperator) ........ 61 4.4.2 FandCRUpdating............................................ 64 4.5 SA-MODE:ATestCase .............................................. 65 4.6 Summary............................................................... 70 References..................................................................... 70 PartIII Applications 5 Mathematical................................................................. 77 5.1 SCH2Function ........................................................ 77 5.2 FONFunction.......................................................... 81 5.3 KURFunction ......................................................... 82 5.4 GTPFunction.......................................................... 86 5.5 ZDTFunctions......................................................... 89 5.6 Min-ExFunction....................................................... 95 5.7 BNHFunction ......................................................... 99 5.8 SRNFunction.......................................................... 101 5.9 OSYFunction.......................................................... 103 5.10 Summary............................................................... 106 References..................................................................... 107 6 Engineering................................................................... 109 6.1 BeamwithSectionI................................................... 109 6.2 WeldedBeam .......................................................... 113 6.3 MachinabilityofStainlessSteel ...................................... 117 6.4 OptimizationofHydrocyclonePerformance......................... 120 6.5 AlkylationProcessOptimization ..................................... 125 6.6 BatchStirredTankReactor(Biochemical)........................... 128 6.7 CatalystMixing........................................................ 131 6.8 CrystallizationProcess ................................................ 134 6.9 RotaryDryer........................................................... 140 6.10 Rotor-DynamicsDesign............................................... 145 6.11 Summary............................................................... 150 References..................................................................... 151 PartIV FinalConsiderations 7 Conclusions................................................................... 155 Reference...................................................................... 157 Index............................................................................... 159 Figures Fig.2.1 PossiblePareto’sCurvesforabi-objectiveoptimization........... 10 Fig.2.2 ConvergenceanddiversityinthePareto’sCurve.................... 11 Fig.2.3 ObjectivefunctionversusindependentvariablesforEq.(2.1)...... 12 Fig.2.4 ObjectivefunctionversusindependentvariablesforEq.(2.4)...... 13 Fig.2.5 Representationofdesignspaceandobjectivespacefora bi-objectiveoptimizationproblem................................... 15 Fig.2.6 Non-dominatedsolutionsfortheexampleproposed................ 16 Fig.3.1 ResolutionofMOOP’susingclassicalaggregationmethods....... 26 Fig.3.2 Geometrical interpretation of the WSM for the convex Pareto’sCurvecase................................................... 28 Fig.3.3 GeometricalinterpretationoftheWSMforthenon-convex Pareto’sCurvecase................................................... 29 Fig.4.1 Genericmulti-objectivealgorithmflowchart........................ 50 Fig.4.2 MODEalgorithmflowchart.......................................... 54 Fig.4.3 Evolutionofthepopulationduringtheevolutionaryprocess forthemathematicalfunctionproposedbyHauptandHaupt...... 55 Fig.4.4 Influence of DE parameters on the number of required generations for the mathematical function proposed by HauptandHaupt...................................................... 56 Fig.4.5 Influenceoftheperturbationrateontheconvergencemetric fortheZDT1function................................................ 57 Fig.4.6 Influenceoftheperturbationrateonthediversitymetricfor theZDT1function.................................................... 57 Fig.4.7 Influenceofthecrossoverprobabilityontheconvergence metricfortheZDT1function ........................................ 57 Fig.4.8 Influenceofthecrossoverprobabilityonthediversitymetric fortheZDT1function................................................ 58 Fig.4.9 SA-MODEalgorithmflowchart...................................... 60 Fig.4.10 InitialpopulationfortheZDT1function ............................ 62 Fig.4.11 Pareto’sCurvefortheZDT1functionusingMODE................ 62 Fig.4.12 AreaasafunctionofthegenerationnumberfortheZDT1 function................................................................ 63 Fig.4.13 Convergence rate ((cid:3)) as a function of the generation i numberfortheZDT1function....................................... 64 Fig.4.14 UpdateDEparametersflowchart..................................... 66 Fig.4.15 Pareto’sCurvefortheZDT1functionbyusingtheSA-MODE.... 67 Fig.4.16 CumulativenumberofobjectiveevaluationsfortheZDT1 functionusingNSGAII,MODE,andSA-MODE.................. 68 Fig.4.17 ConvergencerateandpopulationsizefortheZDT1function byusingtheSA-MODE.............................................. 68 Fig.4.18 EvolutionoftheparametersFandCRfortheZDT1function byusingtheSA-MODE.............................................. 69 Fig.5.1 Pareto’sCurvesfortheSCH2function.............................. 79 Fig.5.2 ConvergencerateandpopulationsizefortheSCH2function...... 80 Fig.5.3 EvolutionoftheDEparametersfortheSCH2function ............ 80 Fig.5.4 Pareto’sCurvesfortheFONfunction ............................... 82 Fig.5.5 ConvergencerateandpopulationsizefortheFONfunction....... 83 Fig.5.6 EvolutionoftheDEparametersfortheFONfunction ............. 83 Fig.5.7 Pareto’sCurvesfortheKURfunction............................... 84 Fig.5.8 ConvergencerateandpopulationsizefortheKURfunction....... 85 Fig.5.9 EvolutionoftheDEparametersfortheKURfunction ............. 86 Fig.5.10 Pareto’sCurvesfortheGTPfunction................................ 87 Fig.5.11 ConvergencerateandpopulationsizefortheGTPfunction ....... 88 Fig.5.12 EvolutionoftheDEparametersfortheGTPfunction.............. 88 Fig.5.13 Pareto’sCurvesfortheZDT2function.............................. 90 Fig.5.14 Pareto’sCurvesfortheZDT3function.............................. 91 Fig.5.15 Pareto’sCurvesfortheZDT4function.............................. 91 Fig.5.16 Pareto’sCurvesfortheZDT6function.............................. 92 Fig.5.17 ConvergencerateandpopulationsizefortheZDT2function...... 93 Fig.5.18 ConvergencerateandpopulationsizefortheZDT3function...... 93 Fig.5.19 ConvergencerateandpopulationsizefortheZDT4function...... 94 Fig.5.20 ConvergencerateandpopulationsizefortheZDT6function...... 94 Fig.5.21 EvolutionoftheDEparametersfortheZDT2function ............ 95 Fig.5.22 EvolutionoftheDEparametersfortheZDT3function ............ 95 Fig.5.23 EvolutionoftheDEparametersfortheZDT4function ............ 96 Fig.5.24 EvolutionoftheDEparametersfortheZDT6function ............ 96 Fig.5.25 Pareto’sCurvesfortheMin-Exfunction ............................ 97 Fig.5.26 ConvergencerateandpopulationsizefortheMin-Exfunction.... 98 Fig.5.27 EvolutionoftheDEparametersfortheMin-Exfunction .......... 98 Fig.5.28 Pareto’sCurvesfortheBNHfunction............................... 100 Fig.5.29 ConvergencerateandpopulationsizefortheBNHfunction....... 100 Fig.5.30 EvolutionoftheDEparametersfortheBNHfunction ............. 101 Fig.5.31 Pareto’sCurvesfortheSRNfunction ............................... 102 Fig.5.32 ConvergencerateandpopulationsizefortheSRNfunction ....... 103 Fig.5.33 EvolutionoftheDEparametersfortheSRNfunction.............. 103 Fig.5.34 Pareto’sCurvesfortheOSYfunction ............................... 105 Fig.5.35 ConvergencerateandpopulationsizefortheOSYfunction....... 106 Fig.5.36 EvolutionoftheDEparametersfortheOSYfunction ............. 106 Fig.6.1 BeamwithsectionI................................................... 110 Fig.6.2 Pareto’sCurvesfortheI-beamproblem............................. 111 Fig.6.3 ConvergencerateandpopulationsizefortheI-beamproblem..... 112 Fig.6.4 EvolutionoftheDEparametersfortheI-beamproblem ........... 113 Fig.6.5 Weldedbeam ......................................................... 113 Fig.6.6 Pareto’sCurvesobtainedfortheproblemoftheweldedbeam..... 115 Fig.6.7 Convergencerateandpopulationsizefortheweldedbeam........ 116 Fig.6.8 EvolutionoftheDEparametersfortheweldedbeam .............. 116 Fig.6.9 Relationbetweentheinputfactorsandtheobservedoutput response............................................................... 117 Fig.6.10 Pareto’s Curves obtained for the machinability of the stainlesssteelproblem................................................ 119 Fig.6.11 Convergencerateandpopulationsizeforthemachinability ofthestainlesssteelproblem......................................... 120 Fig.6.12 EvolutionoftheDEparametersforthemachinabilityofthe stainlesssteelproblem................................................ 120 Fig.6.13 Schematicrepresentationofahydrocyclone ........................ 121 Fig.6.14 Pareto’s Curves obtained for the optimization of the hydrocycloneperformanceproblem................................. 123 Fig.6.15 Convergencerateandpopulationsizefortheoptimization ofthehydrocycloneperformanceproblem.......................... 124 Fig.6.16 EvolutionoftheDEparametersfortheoptimizationof hydrocycloneperformanceproblem................................. 124 Fig.6.17 Simplifiedschematicofthealkylationprocess...................... 125 Fig.6.18 Pareto’sCurvesforthealkylationprocessproblem................. 127 Fig.6.19 Convergencerateandpopulationsizeforthealkylation processproblem....................................................... 127 Fig.6.20 EvolutionoftheDEparametersforthealkylationprocess problem................................................................ 128 Fig.6.21 Pareto’sCurvesforthebatchstirredtankreactorproblem ......... 130 Fig.6.22 Convergencerateandpopulationsizeforthebatchstirred tankreactorproblem.................................................. 131 Fig.6.23 EvolutionoftheDEparametersforthebatchstirredtank reactorproblem ....................................................... 131 Fig.6.24 Pareto’sCurvesforthecatalystmixingproblem.................... 133 Fig.6.25 ControlprofilesconsideringthepointsAandBforthe catalystmixingproblem ............................................. 134 Fig.6.26 Convergencerateandpopulationsizeforthecatalystmixing problem................................................................ 134 Fig.6.27 EvolutionoftheDEparametersforthecatalystmixingproblem.. 135

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.