MULTI OBJECTIVE CONCEPTUAL DESIGN OPTIMIZATION OF AN AGRICULTURAL AERIAL ROBOT (AAR) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY SEGAH ÖZDEMİR IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AEROSPACE ENGINEERING SEPTEMBER 2005 Approval of the Graduate School of Natural and Applied Sciences. ____________________ Prof. Dr. Canan ÖZGEN Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science. ____________________________ Prof. Dr. Nafiz ALEMDAROĞLU Head of the Department This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science. ____________________________ Assoc. Prof. Dr. Ozan TEKİNALP Supervisor Examining Committee Members Prof. Dr. İ. Sinan AKMANDOR (AEE, METU) ________________________ Assoc. Prof. Dr. Ozan TEKİNALP (AEE, METU) ________________________ Prof. Dr. Cahit ÇIRAY (AEE, METU) ________________________ Prof. Dr. Mehmet Şerif KAVSAOĞLU (UUBF, ________________________ ITU) Dr. Fatih TEZOK (TAI) ________________________ PLAGIARISIM I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Segah Özdemir Signature : iii ABSTRACT MULTI OBJECTIVE CONCEPTUAL DESIGN OPTIMIZATION OF AN AGRICULTURAL AERIAL ROBOT Segah Özdemir M.Sc., Department of Aerospace Engineering Supervisor: Assoc. Prof. Dr. Ozan Tekinalp September 2005, 182 pages Multiple Cooling Multi Objective Simulated Annealing algorithm has been combined with a conceptual design code written by the author to carry out a multi objective design optimization of an Agricultural Aerial Robot. Both the single and the multi objective optimization problems are solved. The performance figures of merits for different aircraft configurations are compared. In this thesis the potential of optimization as a powerful design tool to the aerospace problems is demonstrated. Keywords: Airplane Design, Aerial Agriculture, Agricultural UAV, Multi Objective Optimization, Simulated Annealing, Hide-and-Seek iv ÖZ TARIMSAL ROBOT UÇAK KAVRAMSAL TASARIMI ENİYİLEMESİ Segah Özdemir Yüksek Lisans, Havacılık ve Uzay ,Mühendisliği Bölümü Tez Yöneticisi: Doç. Dr. Ozan Tekinalp Eylül 2005, 182 sayfa Çoklu Soğutma-Çok Amaçlı Tavlama Benzetimi Yöntemi yazar tarafından yazılan bir tasarım aracı kullanılarak Tarımsal Robot Uçak çok amaçlı eniyilemesini yapmak üzere birleştirilmiştir. Hem tek hem de çok amaçlı eniyileme problemleri çözülmüştür. Farklı uçak yapılandırmalarının performans değer katsayıları karşılaştırılmıştır. Bu tezde eniyilemenin havacılık ve uzay problemleri için güçlü bir tasarım aracı olabilme potansiyeli gösterilmiştir. Anahtar kelimeler: Uçak Tasarımı, Havai Tarım, İnsansız Zirai ilaçlama Hava Aracı, Çok amaçlı Eniyileme, Tavlama Benzetimi Yöntemi, Sakla ve Ara. v To my parents Hacer&Ramazan Özdemir and my brother Emrah for their love, encouragement, prayers and support. vi ACKNOWLEDGMENTS A great amount of gratitude and appreciation is extended to my supervisor Assoc. Prof. Dr. Ozan Tekinalp for his great amount of knowledge, vision, understanding and friendship. I would like to express my sincere thanks to my supervisor for allowing me to work with him and for believing me. I wouldn’t have achieved this if he hadn’t seen me through this thesis. The same gratitude is extended to the Department of Aerospace Engineering for training me as a good engineer. No substantial challenge comes without sacrifice. For this reason, the greatest thanks go to my parents and my brother, Emrah, for providing me their utmost support and also for their endless love and thrust. Their role in this study is inestimable. My special thanks go to my dear friends, İsmail Karataş, Müjde Sarı, İbrahim Sarı, Kutluk Bilge Arıkan, Dr. Serkan Güroğlu and Ali Emre Turgut for sharing their talents and experience with me. Also, I would like to thank Mustafa Kaya and Monier El-fara for their moral support and help. Finally thanks to Dr. Fatih Tezok and my colleagues in TAI for creating me a good environment for me to love my job. vii TABLE OF CONTENTS PLAGIARISM……………………………………………………………………. iii ABSRACT………………………………………………...………………………. iv OZ………………………………………………………………………………… v ACKNOWLEDGMENT………………………………………………………... vii TABLE OF CONTENTS…………………………………………………………. viii LIST OF TABLES………………………………………………………………... xii LIST OF FIGURES………………………………………………………………. xv NOMENCLATURE………………………………………………………………. xviii CHAPTER 1. INTRODUCTION…………………………………………………………. 1 1.1. Motivation, Justification, and Purpose………………………………... 1 1.2. Literature Survey ………………………………..…………………… 6 1.2.1. History of the Agricultural Aircraft …………………………… 6 1.2.2. Agricultural UAV’s ………….………………………………… 10 1.2.3. Aircraft Design Optimization …………………………………. 12 1.2.4. Optimization Methods Used in Aircraft Design……………….. 14 1.2.5. Multi Objective Design Optimization…………………………. 16 1.3. Original Contributions………….……………………………………… 17 1.4. The Scope of the Thesis………………………………………………. 18 2. AGRICULTURAL MISSION DEFINITION……………………………… 20 2.1. Agricultural Mission, Operational Flying and Techniques……………. 20 viii 2.1.1. Take-off Surface……………………………………………....... 21 2.1.2. Loading ………………………………………………………... 21 2.1.3. Taxing …………………………………………………………. 22 2.1.4. Turns …………………………………………………………... 22 2.1.5. Acceleration ………………………………………………….... 24 2.1.6. Wind Direction and Force……………………………………… 25 2.1.7. Obstructions …………………………………………………… 26 2.1.8. Agricultural Patterns…………………………………………… 27 2.2. Competitor Study and Characteristics of ZIU………………………..... 29 2.3. Requirements…………………………………………………………... 30 2.4. The Mission Profile of An Agricultural Aerial Robot………………… 31 2.5. Agricultural Spraying Pattern and Flight Characteristics……………... 32 2.6. Path Planning For Agricultural Aerial Robot………………………….. 33 3. MATHEMATICAL MODELS USED IN DESIGN OPTIMIZATION……………………………………………………………. 35 3.1. Overall configuration………………………………………………….. 35 3.1.1. Structural Concept……………………………………………… 36 3.1.2. Fuselage……………………………………………………….... 37 3.1.3. Wing Assembly……………………………………………..….. 37 3.1.4. Booms and Tails…………………………………………….….. 37 3.1.5. Engine Specification………………………………………..….. 38 3.1.6. Propeller ……………………………………………………….. 38 3.1.7. Fuel Storage ……………………………………………………. 39 3.1.8. Hopper Tank …………………………………………………… 39 3.1.9. Landing Gear System General Description ……………………. 40 ix 3.2. The Weight Model of the Airplane – First Estimate…………………... 40 3.2.1. Take off Weight Buildup ………………………………...…….. 40 3.2.2. Empty Weight Fraction Estimation…………………………….. 41 3.2.3. Fuel Fraction Estimation……………………………………….. 42 3.3. Estimation of Critical Performance Parameters ………………………. 47 3.3.1. Maximum Lift Coefficient……………………………………... 47 3.3.2. Wing Loading………………………………………………….. 53 3.3.3. Power to Weight Ratio…………………………………………. 54 3.4. Configuration Layout -Geometrical Models ………………………….. 56 3.4.1. Wing Configuration Model ……………………………………. 56 3.4.2. Fuel Tank Configuration Model………………………………... 58 3.4.3. Horizontal Tail and Vertical Tail Configuration Model……….. 60 3.4.4. Control Surfaces Model………………………………………... 63 3.4.5. Fuselage Configuration Model…………………………………. 65 3.4.4. Propeller Model………………………………………………… 67 3.4.5. Landing Gear Model and The Wing Location Estimation……... 69 3.5. Agricultural Sizing Model……………………………………………... 72 3.6. Better Weight Estimate Model………………………………………… 74 3.7. Center of Gravity Location Model…………………………………….. 76 3.8. Aerodynamics Model …………………………………………………. 79 3.8.1. Lift Curve Slope Calculations …………………………………. 79 3.8.2. Estimation of C by Component Buildup Method……………. 80 D0 3.8.3. Drag Polar……………………………………………………… 86 3.8.4. Ground Effect…………………………………………………... 87 3.9. Performance Model …………………………………………………… 88 3.9.1. Figure of Merits for Performance………………………………. 90 x
Description: