Springer Tracts in Advanced Robotics 81 Editors Prof.BrunoSiciliano Prof.OussamaKhatib DipartimentodiInformatica ArtificialIntelligenceLaboratory eSistemistica DepartmentofComputerScience UniversitàdiNapoliFedericoII StanfordUniversity ViaClaudio21,80125Napoli Stanford,CA94305-9010 Italy USA E-mail:[email protected] E-mail:[email protected] Forfurthervolumes: http://www.springer.com/series/5208 EditorialAdvisoryBoard OliverBrock,TUBerlin,Germany HermanBruyninckx,KULeuven,Belgium RajaChatila,LAAS,France HenrikChristensen,GeorgiaTech,USA PeterCorke,QueenslandUniv.Technology,Australia PaoloDario,ScuolaS.AnnaPisa,Italy RüdigerDillmann,Univ.Karlsruhe,Germany KenGoldberg,UCBerkeley,USA JohnHollerbach,Univ.Utah,USA MakotoKaneko,OsakaUniv.,Japan LydiaKavraki,RiceUniv.,USA VijayKumar,Univ.Pennsylvania,USA SukhanLee,SungkyunkwanUniv.,Korea FrankPark,SeoulNationalUniv.,Korea TimSalcudean,Univ.BritishColumbia,Canada RolandSiegwart,ETHZurich,Switzerland GauravSukhatme,Univ.SouthernCalifornia,USA SebastianThrun,StanfordUniv.,USA YangshengXu,ChineseUniv.HongKong,PRC Shin’ichiYuta,TsukubaUniv.,Japan N SdeTrAtRhe(aSupsrpinicgeesrTofraEcUtsRinOANd(vEaunrcoepdeRanobRootbicost)ichsasRbeeseeanrpcrhoNmeottwedorukn)- RERuersoOepaeracBnhROO************TICS NetworkU E Toshio Fukuda, Yasuhisa Hasegawa, Kosuke Sekiyama, and Tadayoshi Aoyama Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics ABC Authors Prof.ToshioFukuda Assoc.Prof.KosukeSekiyama DepartmentofMicro-NanoSystems DepartmentofMicro-NanoSystems Engineering Engineering NagoyaUniversity NagoyaUniversity Nagoya Nagoya Japan Japan Assoc.Prof.YasuhisaHasegawa Assist.Prof.TadayoshiAoyama DepartmentofInformationInteraction DepartmentofSystemCybernetics Technologies HiroshimaUniversity UniversityofTsukuba HigashiHiroshima Tsukuba Japan Japan ISSN1610-7438 e-ISSN1610-742X ISBN978-3-642-30134-6 e-ISBN978-3-642-30135-3 DOI10.1007/978-3-642-30135-3 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012937220 (cid:2)c Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Foreword Robotics is undergoing a major transformation in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into human envi- ronmentsandvigorouslyengagedinitsnewchallenges.Interactingwith,assisting, serving, and exploring with humans, the emerging robots will increasingly touch peopleandtheirlives. Beyondits impacton physicalrobots,the bodyof knowledgeroboticshaspro- duced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neuro- sciences,virtualsimulation,animation,surgery,andsensornetworksamongothers. Inreturn,thechallengesofthenewemergingareasareprovinganabundantsource ofstimulationandinsightsforthefieldofrobotics.Itisindeedattheintersectionof disciplinesthatthemoststrikingadvanceshappen. TheSpringerTractsin AdvancedRobotics(STAR)isdevotedtobringingtothe research community the latest advances in the robotics field on the basis of their significance and quality. Through a wide and timely dissemination of critical re- searchdevelopmentsin robotics,ourobjectivewith this seriesis to promotemore exchanges and collaborations among the researchers in the community and con- tributetofurtheradvancementsinthisrapidlygrowingfield. The monographby Toshio Fukuda,Yasuhisa Hasegawa, KosukeSekiyama and Tadayoshi Aoyama focuses on a novel concept of bio-inspired robotics, namely multi-locomotion.Thisincludesnotonlytheclassicalleggedlocomotionwhichhas inspired a wide host of research on humanoidrobots, but also hopping,climbing, brachiationandsnakelocomotion.Anumberofchallengesconcernedwiththevar- ious types of robotic systems are dealt with in the tract, including design, motion planning,sensing,dynamics,stabilizationandcontrol. Rich of experimentalresults and discussion aboutthe performanceand the po- tential of multi-locomotion in robotics, this volume constitutes a fine addition to STAR! March2012 BrunoSiciliano Naples,Italy STAREditor Preface Nowadays, multiple attention have been paid on a robot working in the human living environment,such as in the field of medical, welfare, entertainmentand so on. In order to accomplish these kinds of robot and put them into practical use, there are quite many unsolved problems. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering,sensor- technology,interfaces and motion control. In the future, it is expectedtorealizesuperhighfunctionalhuman-likerobotbyintegratingtechnolo- giesinvariousfieldsincludingthesetypesofresearches.Thisbookdealswithloco- motionmobilityamongthe issues mentionedabove.Here,focusingonanimalsin thenature,itisseenthatdiversityoflocomotionisimportant.Theyarecapableto performseveralkindsoflocomotionbystand-aloneandtoaccommodatethealter- ationofenvironmentbychoosingtheadequatelocomotionfrommultiplelocomo- tionmodes.Inspiredbythis,weintroduceanovelconceptofbio-inspiredrobotics, Multi-LocomotionRobotsystem. The Multi-LocomotionRobothas a high ability toambulatebyachievingseveralkindsoflocomotioninstand-alone. This book is organizedas follows. Chapter 1 introducesrobotlocomotion sys- tems such as legged locomotion, hopping, climbing, brachiation robot, and snake locomotion; and then the concept of the Multi-Locomotion Robot is also intro- duced.InChapter2,basicsofroboticmotioncontrolareexplained.Especially,the PassiveDynamicAutonomousControl(PDAC)areexplained.Chapter3describes the link structure and control system including sensors and actuators of Gorilla Robot–designed as Multi-Locomotion Robot–that is employed in the experiment. In Chapter 4, multiple brachiating controllers (learning-basedmethod and analyt- ical method) for the Gorilla Robot are described. In Chapter 5, static quadruped walkingcalledcrawlgaitisrealizedsothatMulti-locomotionRobotcanmovesta- bly.In addition,the structureof the Gorilla Robotis analyzedasquadrupedhard- ware. Chapter 6 describes three climbing ladder motions of the Gorilla Robot. In Chapter7,aload-allocationalgorithmisproposedtobalancetheloadsofthejoint motorsduringtransitionfroma ladderto another.By applyingthe load-allocation algorithm, the transition motion from ladder climbing to brachiation is achieved. In Chapter 8, we propose a method to choose a suitable locomotion mode by VIII Preface estimating the falling down risk. The falling down risk is estimated from internal conditionsof the robotusing Bayesian Network.A stable locomotionalong some unknowntestcourseswithtransitionbetweenbipedandquadrupedwalksisexper- imentally realized. In Chapter 9, the PDAC is applied to multiple motions. First applicationsarethe3-Dbipedwalkingof2-Ddynamicssuchaslateralandsagittal motions. Secondone is the heel-offbiped walking that makes it possible to avoid theproblemfortheimpactshockatafootlanding.Thirdoneisthe3-Dbipedwalk- ingbasedon3-Ddynamicswithoutdividinginto2-Dplane.Fourthoneisthe3-D biped walking on uneven terrain. Fifth one is the quadruped walking, and the fi- nalapplicationisthebrachiation.Finally,wesummarizeanddiscussperspectiveof thesestudiesinChapter10. Nagoya,February2012 ToshioFukuda YasuhisaHasegawa KosukeSekiyama TadayoshiAoyama Contents 1 Introduction................................................... 1 1.1 RobotLocomotion ......................................... 1 1.2 RelatedWorksofRobotLocomotion .......................... 2 1.2.1 QuadrupedLocomotion............................... 2 1.2.2 HexapodLocomotion................................. 5 1.2.3 Hopping............................................ 6 1.2.4 Brachiation ......................................... 7 1.2.5 SnakeLocomotion ................................... 8 1.2.6 BipedLocomotion ................................... 9 1.3 Bio-inspiredSystem ........................................ 28 1.3.1 FoundationofNeuralNetwork ......................... 28 1.3.2 RecurrentNeuralNetwork ............................ 34 1.3.3 Feed-forwardNeuralNetwork ......................... 38 1.3.4 CerebellarModelArithmeticComputer(CMAC) ......... 45 1.3.5 FuzzyNeuralNetwork................................ 46 1.3.6 GeneticAlgorithms .................................. 50 1.3.7 CentralPatternGenerator ............................. 52 1.4 Multi-LocomotionRobot .................................... 53 1.4.1 Bio-inspiredRobot................................... 53 1.4.2 DiversityofLocomotioninAnimals .................... 54 1.4.3 Multi-LocomotionRobot.............................. 55 1.5 OrganizationofThisBook................................... 58 2 Basics......................................................... 61 2.1 TrajectoryGenerationMethodofRobots....................... 61 2.1.1 GenerationofaDesiredTrajectory ..................... 61 2.1.2 BasicOrbitalFunction................................ 62 2.1.3 DesignofBasicOrbitalFunctionUsingn-Dimensional Polynomial ......................................... 62 2.2 LimitCycle ............................................... 63 2.3 PassiveDynamicAutonomousControl(PDAC) ................. 65 2.3.1 DynamicsofPDAC .................................. 65 X Contents 2.3.2 ControlSystem...................................... 70 2.3.3 AdvantageofPDAC.................................. 71 3 HardwareofMulti-LocomotionRobot............................ 75 3.1 BrachiationRobot(ConventionalBio-inspiredRobot)............ 75 3.2 GorillaRobot(Multi-LocomotionRobot) ...................... 76 3.2.1 GorillaRobotI ...................................... 77 3.2.2 GorillaRobotII ..................................... 79 3.2.3 GorillaRobotIII..................................... 80 3.3 Summary ................................................. 80 4 Brachiation.................................................... 83 4.1 WhatIsBrachiation?........................................ 83 4.2 LearningAlgorithmforaGorillaRobotBrachiation ............. 84 4.2.1 MotionLearning..................................... 84 4.2.2 Experiment ......................................... 88 4.2.3 SummaryofThisSection ............................. 94 4.3 ContinuousBrachiationUsingtheGorillaRobot ................ 95 4.3.1 Smooth,ContinuousBrachiation ....................... 95 4.3.2 ControllerDesign.................................... 97 4.3.3 Experiment .........................................101 4.3.4 SummaryofThisSection .............................106 4.4 ContinuousBrachiationontheIrregularLadder .................106 4.4.1 MotionDesignoftheBrachiation ......................106 4.4.2 LocomotionAction ..................................108 4.4.3 SwingAction .......................................111 4.4.4 Experiment .........................................114 4.4.5 SummaryofThisSection .............................116 4.5 Summary .................................................116 5 QuadrupedWalking............................................117 5.1 RealizationofaCrawlGait ..................................117 5.1.1 MotionDesignofaCrawlGait.........................117 5.1.2 JointTrajectoryoftheLeg ............................120 5.1.3 EstimationofWalkingEnergy .........................122 5.1.4 Experiment .........................................124 5.2 Joint Torque Evaluationof the Gorilla Robot on Slopes as QuadrupedHardware .......................................127 5.2.1 StructureofGorillaRobotIII ..........................127 5.2.2 BasicGaitPattern....................................127 5.2.3 EvaluationofJointTorqueinQuadrupedWalk onaSlope ..........................................129 5.2.4 SimulationAnalysis..................................132 5.2.5 Experiment .........................................135 5.3 Summary .................................................137 Contents XI 6 LadderClimbingMotion .......................................139 6.1 ModelofLadderClimbing...................................139 6.1.1 BasicMotionModel..................................139 6.1.2 LadderClimbingGait ................................140 6.1.3 BodyYawingMomentum .............................141 6.1.4 ErrorRecognitionandEscapeMotion...................144 6.2 Experiment................................................145 6.2.1 TransverseGait......................................146 6.2.2 PaceGaitwithConstantVelocity .......................148 6.2.3 TrotGaitwithAcceleration............................148 6.3 Summary .................................................150 7 TransitionMotionfromLadderClimbingtoBrachiation ...........153 7.1 MotionDesign.............................................153 7.1.1 EnvironmentStatement ...............................153 7.1.2 MotionPlanning.....................................154 7.1.3 TransitionMotion....................................155 7.2 ContactForcesFormulation..................................156 7.2.1 AssumptionsandEquilibriumEquations.................156 7.2.2 SupportingForcesDecomposition ......................157 7.2.3 BriefSummaryandProblemStatement..................158 7.3 Load-AllocationControl.....................................158 7.3.1 ConceptofLoad-AllocationControl ....................158 7.3.2 ObjectiveFunctionandConstraints .....................159 7.3.3 GenerationofOptimizedSupportingForces..............161 7.3.4 Load-AllocationAlgorithm............................162 7.4 EexperimentResultsandDiscussion...........................165 7.4.1 ValidatingtheAssumptionsandLoad-Allocation Ability .............................................166 7.4.2 DiscussionofFailureswithPositionControl .............168 7.4.3 ExperimentResultswithLoad-AllocationControl.........169 7.5 Summary .................................................171 8 LocomotionTransitionBasedonWalkingStabilizationNormUsing BayesianNetwork..............................................173 8.1 Introduction ...............................................173 8.2 SensorSystemandLocomotionMode .........................173 8.3 LocomotionStabilization....................................175 8.4 StabilizationBasedonExternalInformation ....................176 8.4.1 RecognitionofGround ...............................176 8.5 StabilizationBasedonInternalConditions .....................177 8.5.1 EstimationofProbability..............................177 8.5.2 ConsiderationofStabilityMargin ......................179 8.5.3 ShiftofLocomotionMode ............................179 8.6 Experiments...............................................180