Table Of ContentSpringer Tracts in Advanced Robotics 81
Editors
Prof.BrunoSiciliano Prof.OussamaKhatib
DipartimentodiInformatica ArtificialIntelligenceLaboratory
eSistemistica DepartmentofComputerScience
UniversitàdiNapoliFedericoII StanfordUniversity
ViaClaudio21,80125Napoli Stanford,CA94305-9010
Italy USA
E-mail:siciliano@unina.it E-mail:khatib@cs.stanford.edu
Forfurthervolumes:
http://www.springer.com/series/5208
EditorialAdvisoryBoard
OliverBrock,TUBerlin,Germany
HermanBruyninckx,KULeuven,Belgium
RajaChatila,LAAS,France
HenrikChristensen,GeorgiaTech,USA
PeterCorke,QueenslandUniv.Technology,Australia
PaoloDario,ScuolaS.AnnaPisa,Italy
RüdigerDillmann,Univ.Karlsruhe,Germany
KenGoldberg,UCBerkeley,USA
JohnHollerbach,Univ.Utah,USA
MakotoKaneko,OsakaUniv.,Japan
LydiaKavraki,RiceUniv.,USA
VijayKumar,Univ.Pennsylvania,USA
SukhanLee,SungkyunkwanUniv.,Korea
FrankPark,SeoulNationalUniv.,Korea
TimSalcudean,Univ.BritishColumbia,Canada
RolandSiegwart,ETHZurich,Switzerland
GauravSukhatme,Univ.SouthernCalifornia,USA
SebastianThrun,StanfordUniv.,USA
YangshengXu,ChineseUniv.HongKong,PRC
Shin’ichiYuta,TsukubaUniv.,Japan
N
SdeTrAtRhe(aSupsrpinicgeesrTofraEcUtsRinOANd(vEaunrcoepdeRanobRootbicost)ichsasRbeeseeanrpcrhoNmeottwedorukn)- RERuersoOepaeracBnhROO************TICS
NetworkU
E
Toshio Fukuda, Yasuhisa Hasegawa,
Kosuke Sekiyama, and Tadayoshi Aoyama
Multi-Locomotion Robotic
Systems
New Concepts of Bio-inspired Robotics
ABC
Authors
Prof.ToshioFukuda Assoc.Prof.KosukeSekiyama
DepartmentofMicro-NanoSystems DepartmentofMicro-NanoSystems
Engineering Engineering
NagoyaUniversity NagoyaUniversity
Nagoya Nagoya
Japan Japan
Assoc.Prof.YasuhisaHasegawa Assist.Prof.TadayoshiAoyama
DepartmentofInformationInteraction DepartmentofSystemCybernetics
Technologies HiroshimaUniversity
UniversityofTsukuba HigashiHiroshima
Tsukuba Japan
Japan
ISSN1610-7438 e-ISSN1610-742X
ISBN978-3-642-30134-6 e-ISBN978-3-642-30135-3
DOI10.1007/978-3-642-30135-3
SpringerHeidelbergNewYorkDordrechtLondon
LibraryofCongressControlNumber:2012937220
(cid:2)c Springer-VerlagBerlinHeidelberg2012
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.
PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations
areliabletoprosecutionundertherespectiveCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub-
lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany
errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect
tothematerialcontainedherein.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Foreword
Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronmentsandvigorouslyengagedinitsnewchallenges.Interactingwith,assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
peopleandtheirlives.
Beyondits impacton physicalrobots,the bodyof knowledgeroboticshaspro-
duced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neuro-
sciences,virtualsimulation,animation,surgery,andsensornetworksamongothers.
Inreturn,thechallengesofthenewemergingareasareprovinganabundantsource
ofstimulationandinsightsforthefieldofrobotics.Itisindeedattheintersectionof
disciplinesthatthemoststrikingadvanceshappen.
TheSpringerTractsin AdvancedRobotics(STAR)isdevotedtobringingtothe
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical re-
searchdevelopmentsin robotics,ourobjectivewith this seriesis to promotemore
exchanges and collaborations among the researchers in the community and con-
tributetofurtheradvancementsinthisrapidlygrowingfield.
The monographby Toshio Fukuda,Yasuhisa Hasegawa, KosukeSekiyama and
Tadayoshi Aoyama focuses on a novel concept of bio-inspired robotics, namely
multi-locomotion.Thisincludesnotonlytheclassicalleggedlocomotionwhichhas
inspired a wide host of research on humanoidrobots, but also hopping,climbing,
brachiationandsnakelocomotion.Anumberofchallengesconcernedwiththevar-
ious types of robotic systems are dealt with in the tract, including design, motion
planning,sensing,dynamics,stabilizationandcontrol.
Rich of experimentalresults and discussion aboutthe performanceand the po-
tential of multi-locomotion in robotics, this volume constitutes a fine addition to
STAR!
March2012 BrunoSiciliano
Naples,Italy STAREditor
Preface
Nowadays, multiple attention have been paid on a robot working in the human
living environment,such as in the field of medical, welfare, entertainmentand so
on. In order to accomplish these kinds of robot and put them into practical use,
there are quite many unsolved problems. Various types of researches are being
conducted actively in a variety of fields such as artificial intelligence, cognitive
engineering,sensor- technology,interfaces and motion control. In the future, it is
expectedtorealizesuperhighfunctionalhuman-likerobotbyintegratingtechnolo-
giesinvariousfieldsincludingthesetypesofresearches.Thisbookdealswithloco-
motionmobilityamongthe issues mentionedabove.Here,focusingonanimalsin
thenature,itisseenthatdiversityoflocomotionisimportant.Theyarecapableto
performseveralkindsoflocomotionbystand-aloneandtoaccommodatethealter-
ationofenvironmentbychoosingtheadequatelocomotionfrommultiplelocomo-
tionmodes.Inspiredbythis,weintroduceanovelconceptofbio-inspiredrobotics,
Multi-LocomotionRobotsystem. The Multi-LocomotionRobothas a high ability
toambulatebyachievingseveralkindsoflocomotioninstand-alone.
This book is organizedas follows. Chapter 1 introducesrobotlocomotion sys-
tems such as legged locomotion, hopping, climbing, brachiation robot, and snake
locomotion; and then the concept of the Multi-Locomotion Robot is also intro-
duced.InChapter2,basicsofroboticmotioncontrolareexplained.Especially,the
PassiveDynamicAutonomousControl(PDAC)areexplained.Chapter3describes
the link structure and control system including sensors and actuators of Gorilla
Robot–designed as Multi-Locomotion Robot–that is employed in the experiment.
In Chapter 4, multiple brachiating controllers (learning-basedmethod and analyt-
ical method) for the Gorilla Robot are described. In Chapter 5, static quadruped
walkingcalledcrawlgaitisrealizedsothatMulti-locomotionRobotcanmovesta-
bly.In addition,the structureof the Gorilla Robotis analyzedasquadrupedhard-
ware. Chapter 6 describes three climbing ladder motions of the Gorilla Robot. In
Chapter7,aload-allocationalgorithmisproposedtobalancetheloadsofthejoint
motorsduringtransitionfroma ladderto another.By applyingthe load-allocation
algorithm, the transition motion from ladder climbing to brachiation is achieved.
In Chapter 8, we propose a method to choose a suitable locomotion mode by
VIII Preface
estimating the falling down risk. The falling down risk is estimated from internal
conditionsof the robotusing Bayesian Network.A stable locomotionalong some
unknowntestcourseswithtransitionbetweenbipedandquadrupedwalksisexper-
imentally realized. In Chapter 9, the PDAC is applied to multiple motions. First
applicationsarethe3-Dbipedwalkingof2-Ddynamicssuchaslateralandsagittal
motions. Secondone is the heel-offbiped walking that makes it possible to avoid
theproblemfortheimpactshockatafootlanding.Thirdoneisthe3-Dbipedwalk-
ingbasedon3-Ddynamicswithoutdividinginto2-Dplane.Fourthoneisthe3-D
biped walking on uneven terrain. Fifth one is the quadruped walking, and the fi-
nalapplicationisthebrachiation.Finally,wesummarizeanddiscussperspectiveof
thesestudiesinChapter10.
Nagoya,February2012 ToshioFukuda
YasuhisaHasegawa
KosukeSekiyama
TadayoshiAoyama
Contents
1 Introduction................................................... 1
1.1 RobotLocomotion ......................................... 1
1.2 RelatedWorksofRobotLocomotion .......................... 2
1.2.1 QuadrupedLocomotion............................... 2
1.2.2 HexapodLocomotion................................. 5
1.2.3 Hopping............................................ 6
1.2.4 Brachiation ......................................... 7
1.2.5 SnakeLocomotion ................................... 8
1.2.6 BipedLocomotion ................................... 9
1.3 Bio-inspiredSystem ........................................ 28
1.3.1 FoundationofNeuralNetwork ......................... 28
1.3.2 RecurrentNeuralNetwork ............................ 34
1.3.3 Feed-forwardNeuralNetwork ......................... 38
1.3.4 CerebellarModelArithmeticComputer(CMAC) ......... 45
1.3.5 FuzzyNeuralNetwork................................ 46
1.3.6 GeneticAlgorithms .................................. 50
1.3.7 CentralPatternGenerator ............................. 52
1.4 Multi-LocomotionRobot .................................... 53
1.4.1 Bio-inspiredRobot................................... 53
1.4.2 DiversityofLocomotioninAnimals .................... 54
1.4.3 Multi-LocomotionRobot.............................. 55
1.5 OrganizationofThisBook................................... 58
2 Basics......................................................... 61
2.1 TrajectoryGenerationMethodofRobots....................... 61
2.1.1 GenerationofaDesiredTrajectory ..................... 61
2.1.2 BasicOrbitalFunction................................ 62
2.1.3 DesignofBasicOrbitalFunctionUsingn-Dimensional
Polynomial ......................................... 62
2.2 LimitCycle ............................................... 63
2.3 PassiveDynamicAutonomousControl(PDAC) ................. 65
2.3.1 DynamicsofPDAC .................................. 65
X Contents
2.3.2 ControlSystem...................................... 70
2.3.3 AdvantageofPDAC.................................. 71
3 HardwareofMulti-LocomotionRobot............................ 75
3.1 BrachiationRobot(ConventionalBio-inspiredRobot)............ 75
3.2 GorillaRobot(Multi-LocomotionRobot) ...................... 76
3.2.1 GorillaRobotI ...................................... 77
3.2.2 GorillaRobotII ..................................... 79
3.2.3 GorillaRobotIII..................................... 80
3.3 Summary ................................................. 80
4 Brachiation.................................................... 83
4.1 WhatIsBrachiation?........................................ 83
4.2 LearningAlgorithmforaGorillaRobotBrachiation ............. 84
4.2.1 MotionLearning..................................... 84
4.2.2 Experiment ......................................... 88
4.2.3 SummaryofThisSection ............................. 94
4.3 ContinuousBrachiationUsingtheGorillaRobot ................ 95
4.3.1 Smooth,ContinuousBrachiation ....................... 95
4.3.2 ControllerDesign.................................... 97
4.3.3 Experiment .........................................101
4.3.4 SummaryofThisSection .............................106
4.4 ContinuousBrachiationontheIrregularLadder .................106
4.4.1 MotionDesignoftheBrachiation ......................106
4.4.2 LocomotionAction ..................................108
4.4.3 SwingAction .......................................111
4.4.4 Experiment .........................................114
4.4.5 SummaryofThisSection .............................116
4.5 Summary .................................................116
5 QuadrupedWalking............................................117
5.1 RealizationofaCrawlGait ..................................117
5.1.1 MotionDesignofaCrawlGait.........................117
5.1.2 JointTrajectoryoftheLeg ............................120
5.1.3 EstimationofWalkingEnergy .........................122
5.1.4 Experiment .........................................124
5.2 Joint Torque Evaluationof the Gorilla Robot on Slopes as
QuadrupedHardware .......................................127
5.2.1 StructureofGorillaRobotIII ..........................127
5.2.2 BasicGaitPattern....................................127
5.2.3 EvaluationofJointTorqueinQuadrupedWalk
onaSlope ..........................................129
5.2.4 SimulationAnalysis..................................132
5.2.5 Experiment .........................................135
5.3 Summary .................................................137
Contents XI
6 LadderClimbingMotion .......................................139
6.1 ModelofLadderClimbing...................................139
6.1.1 BasicMotionModel..................................139
6.1.2 LadderClimbingGait ................................140
6.1.3 BodyYawingMomentum .............................141
6.1.4 ErrorRecognitionandEscapeMotion...................144
6.2 Experiment................................................145
6.2.1 TransverseGait......................................146
6.2.2 PaceGaitwithConstantVelocity .......................148
6.2.3 TrotGaitwithAcceleration............................148
6.3 Summary .................................................150
7 TransitionMotionfromLadderClimbingtoBrachiation ...........153
7.1 MotionDesign.............................................153
7.1.1 EnvironmentStatement ...............................153
7.1.2 MotionPlanning.....................................154
7.1.3 TransitionMotion....................................155
7.2 ContactForcesFormulation..................................156
7.2.1 AssumptionsandEquilibriumEquations.................156
7.2.2 SupportingForcesDecomposition ......................157
7.2.3 BriefSummaryandProblemStatement..................158
7.3 Load-AllocationControl.....................................158
7.3.1 ConceptofLoad-AllocationControl ....................158
7.3.2 ObjectiveFunctionandConstraints .....................159
7.3.3 GenerationofOptimizedSupportingForces..............161
7.3.4 Load-AllocationAlgorithm............................162
7.4 EexperimentResultsandDiscussion...........................165
7.4.1 ValidatingtheAssumptionsandLoad-Allocation
Ability .............................................166
7.4.2 DiscussionofFailureswithPositionControl .............168
7.4.3 ExperimentResultswithLoad-AllocationControl.........169
7.5 Summary .................................................171
8 LocomotionTransitionBasedonWalkingStabilizationNormUsing
BayesianNetwork..............................................173
8.1 Introduction ...............................................173
8.2 SensorSystemandLocomotionMode .........................173
8.3 LocomotionStabilization....................................175
8.4 StabilizationBasedonExternalInformation ....................176
8.4.1 RecognitionofGround ...............................176
8.5 StabilizationBasedonInternalConditions .....................177
8.5.1 EstimationofProbability..............................177
8.5.2 ConsiderationofStabilityMargin ......................179
8.5.3 ShiftofLocomotionMode ............................179
8.6 Experiments...............................................180