ebook img

Multi-frequency analysis of neutralino dark matter annihilations in the Coma cluster PDF

27 Pages·2006·0.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-frequency analysis of neutralino dark matter annihilations in the Coma cluster

A&A455,21–43(2006) Astronomy DOI:10.1051/0004-6361:20053887 & (cid:1)c ESO2006 Astrophysics Multi-frequency analysis of neutralino dark (cid:1) matter annihilations in the Coma cluster S.Colafrancesco1,2,S.Profumo3,andP.Ullio4,5 1 INAF–OsservatorioAstronomicodiRoma,viaFrascati33,00040Monteporzio,Italy 2 IstitutoNazionalediFisicaNucleare,SezionediRoma2,00133Roma,Italy e-mail:[email protected] 3 DepartmentofPhysics,FloridaStateUniversity,505KeenBldg.,Tallahassee,FL32306,USA e-mail:[email protected] 4 ScuolaInternazionaleSuperiorediStudiAvanzati,viaBeirut2-4,34014Trieste,Italy 5 IstitutoNazionalediFisicaNucleare,SezionediTrieste,34014Trieste,Italy e-mail:[email protected] Received22July2005/Accepted10April2006 ABSTRACT Westudytheastrophysicalimplicationsofneutralinodarkmatterannihilationsingalaxyclusters,withaspecificapplicationtothe Comacluster. Wefirstaddress thedeterminationof thedarkhalo modelsfor Coma, startingfromstructureformation modelsand observationaldata,andwediscussindetailtheroleofsub-halos.Wethenperformathoroughanalysisofthetransportanddiffusion propertiesofneutralinoannihilationproducts,andinvestigatetheresultingmulti-frequencysignals,fromradiotogamma-rayfrequen- cies.Wealsostudyother relevantastrophysical effectsofneutralinoannihilations,liketheDM-inducedSunyaev-Zel’dovich effect andtheintraclustergasheating.Asfortheparticlephysicssetup,weadoptatwo-foldapproach,resortingbothtomodel-independent bottom-upscenariosandtobenchmark,GUT-motivatedframeworks.WeshowthattheComaradio-halodata(thespectrumandthe surfacebrightness)canbenicelyfittedbytheneutralino-inducedsignalforpeculiarparticlephysicsmodelsandformagneticfield values,whichweoutlineindetail.Fittingtheradiodataandmovingtohigherfrequencies,wefindthatthemulti-frequencyspectral energydistributionsaretypicallydimatEUVandX-rayfrequencies(withrespecttothedata),butshowanon-negligiblegamma-ray emission,dependingontheamplitudeoftheComamagneticfield.Asimultaneousfittotheradio,EUVandHXRdataisnotpossible withoutviolatingthegamma-rayEGRETupperlimit.Thebest-fitparticlephysicsmodelsyieldssubstantialheatingoftheintracluster gas,butnotsufficientenergyinjectionastoexplainthequenching ofcoolingflowsintheinnermostregionofclusters.Duetothe specificmulti-frequencyfeaturesoftheDM-inducedspectralenergydistributioninComa,wefindthatsupersymmetricmodelscan besignificantlyandoptimallyconstrainedeitherinthegamma-raysoratradioandmicrowavefrequencies. Keywords.cosmology:theory–galaxies:clusters–cosmology:darkmatter–galaxies:clusters:general 1. Introduction is Ω = 0.0233/h2, with the onlyother significantextra matter b termincolddarkmatterΩ =Ω −Ω ,thatourUniversehas Mmaotsttero,fwthhoesempartetesernccoenitsenintdoicfattheedbuynisveevreserailsasintrofpohrmysiocfaldeavrik- aflatgeometryandacosmCoDloMgicalcmonstabntΛ,i.e.ΩΛ =1−Ωm, and, finally,thatthe primordialpowerspectrumis scale invari- dences(e.g.,gravitationallensing,galaxyrotationcurves,galaxy antandisnormalizedtothevalueσ = 0.897.Thischoicesets clustersmasses)butwhosenatureisstillelusive.Onthecosmo- 8 ourframework,butitisnotactuallycrucialforanyoftheresults logicalside,themostrecentresultsofobservationalcosmology, presentedinthepaper,whichcanbeeasilyrescaledincaseofa i.e. WMAP vs. distant SN Ia, indicate that the matter content re-assessmentofbest-fitvaluesofthecosmologicalparameters, oΩfbthh2e=un0i.v0e2r2s4e±is0Ω.0m0h029=(S0p.e1r3g5el+−00e..t0000a89l.w2i0th03a).bTahryeocnomdebnisniatytioonf acondsminolpoagritcicaullmaroodfelt,hwehvialeluweiodfeΩlyCuDsMed(,thheasprbeeseennatlcsoonccroitridcaiznecde oftheavailabledataonlargescalestructures(Ly-αforestanal- and questionedin the lightofstill unexploredsystematics, see, ysis of the SDSS, the SDSS galaxy clustering) with the latest e.g., Myersetal.2003; Sadatetal.2005; Lieu&Mittaz2005; SNe and with the 1st year WMAP CMB anisotropies can im- Copietal.2004) provethedeterminationofthecosmologicalparameters(Seljak The Coma cluster has been the first astrophysical labora- etal.2004)andhenceallowustosetaconcordancecosmologi- tory for dark matter (DM) since the analysis of F. Zwicky calmodel. (Zwicky1933).Inthisrespect,wecanconsidertheComacluster Werefer,inthispaper,toaflatΛCDMcosmologywithpa- asanastrophysicalbenchmarkcase-studyforDM.Modernob- rameters chosen according to the global best fitting results de- servationshaveledto anincreasinglysophisticatedexploration rivedinSeljaketal.(2004)(seetheirTable1,thirdcolumn):we of the DM distribution in the universe, now confirmed to be assume, in fact, thatthe presentmatter energydensityis Ω = m a dominant component (relative to the baryonic material) over 0.281, that the Hubble constant in units of 100 kms−1Mpc−1 scalesrangingfromthoseofgalaxyhalostothatoftheparticle is h = 0.71, that the present mean energy density in baryons horizon. (cid:2) AppendixAisonlyavailableinelectronicformat The nature of DM is not yet known and several de- http://www.edpsciences.org tection techniques have been used so far. Obviously, direct Article published by EDP Sciences and available at http://www.edpsciences.org/aaor http://dx.doi.org/10.1051/0004-6361:20053887 22 S.Colafrancescoetal.:DMannihilationsinComa detectionisthecleanestandmostdecisivediscriminant(seee.g. finalstateproductsofneutralinopairannihilations,andthemass Munoz2003, fora review).However,it wouldbeinterestingif of the neutralino itself. We will indicate this first strategy as a astronomicaltechniquesweretorevealsomeofthefundamental bottom-upapproach(seeSect.4.1fordetails). propertiesofDMparticles.Infact,ifDMissupposedtoconsist Sincemostphenomenologicalstudieshavebeensofarbased offundamentalparticleswhichareweaklyinteracting,thentheir on GUT-motivated models, and a wealth of results on accel- owninteractionwillleadtoanumberofastrophysicalsignatures erator physics, direct and indirect detection has accumulated (e.g.,high-energygamma-rays,electronsandpositrons,protons withintheseframeworks,wedecidedtoworkouthere,aswell, andneutrinosandhencebytheiremission/interactionproperties) the astrophysicalconsequences,for the system underconsider- indicativeoftheirnatureandcomposition. ation, of a few benchmark models. The latter have been cho- These facts provide the basic motivations for our study, sen among the minimal supergravity (mSUGRA) models indi- whichisaimedto:i)describethemulti-wavelengthsignalsofthe catedinBattagliaetal.(2004)withthecriterionofexemplifying presenceofDMthroughtheemissionfeaturesofthesecondary thewidestrangeofpossibilitieswithinthatparticulartheoretical products of neutralino annihilation. These signals are of non- setup(seeSect.3.2fordetails). thermal nature and coverthe entire electro-magneticspectrum, from radio to gamma-ray frequencies;ii) indicate the best fre- quencywindowswhereitwillbepossibletocatchphysicalindi- 1.2.Theastrophysicalframework cationsforthenatureofDM;iii)applythisanalysistothelargest To make our study quantitative, we will compare the predic- boundcontainersofDMintheuniverse,i.e.galaxyclusters.We tionsoftheabovementionedneutralinomodelswiththeobser- shall focushere on the case of the Coma cluster, a particularly vationalset-upoftheComacluster,whichrepresentsthelargest richandsuitablelaboratoryforwhichanextendedobservational available observational database for a galaxy cluster. The to- databaseisathand. tal mass of Coma found within 10 h−1 Mpc from its center is M<10h−1 Mpc ≈ 1.65×1015 M(cid:3) (Gelleretal.1999).Theassump- 1.1.Thefundamentalphysicsframework tion of hydrostatic equilibrium of the thermal intra-cluster gas in Coma provides a complementary estimate of its total mass SeveralcandidateshavebeenproposedasfundamentalDMcon- enclosed in the radius r. A value M ≈ 1.85×1015 M(cid:3) within stituents,rangingfromaxionstolight,MeVDM,fromKKpar- 5h−1MpcfromtheclustercenterhasbeenobtainedfromX-ray ticles, branons, primordial BHs, mirror matter to supersym- 50 data(Hughes1989). metric WIMPs (see, e.g., Baltz2004; Bertoneetal.2004; and X-rayobservationsofComaalsoyielddetailedinformation Bergstrom2000, for recent reviews). In this paper we will as- about the thermal electrons population. We know that the hot sume thatthe mainDM constituentis thelightestneutralinoof thermal electrons are at a temperature k T = 8.2 ± 0.4 keV the minimal supersymmetric extension of the Standard Model (Arnaudetal.2001) and have a central dBenesity n = (3.42 ± (MSSM).Althoughnoexperimentalevidenceinfavorofsuper- 0 0.047)h1/2×10−3cm−3,withaspatialdistributionfittedbyaβ- symmetryhasshownuptodate,severaltheoreticalmotivations 70 indicatethattheMSSM isoneofthe bestbetsfornewphysics model,n(r)=n0(1+r2/rc2)−3β/2,withparametersrc =10.5(cid:4)±0.6(cid:4) beyondthe Standard Model. Intriguinglyenough,and contrary andβ ≈ 0.75(Brieletal.1992).Assumingsphericalsymmetry tothemajorityofotherparticlephysicscandidatesforDM,su- andthepreviousparametervalues,theopticaldepthofthether- persymmetrycanunambiguouslymanifestitselfinfutureaccel- mal gas in Coma is τth (cid:5) 5.54×10−3 and the pressure due to eratorexperiments.Furthermore,providedneutralinosarestable thethermalelectronpopulationis Pth (cid:5) 2.80×10−2 keVcm−3. andarethelightestsupersymmetricparticles,nextgenerationdi- The hot intra-cluster gas produces also a thermal SZ effect rectdetectionexperimentsfeaturegoodchancestoexploremost (Sunyaev&Zel’dovich1972; Sunyaev&Zel’dovich1980; see oftheneutralino-protonscatteringcrosssectionrangepredicted Birkinshaw1999, for a general review) which has been ob- bysupersymmetry. served over a wide frequencyrange, from 32 to 245 GHz (see A long standing issue in phenomenologicalstudies of low- DePetrisetal.2002,andreferencestherein). energy supersymmetry is traced to the parameterization of the Beyond the presence of DM and thermal gas, Coma also supersymmetrybreakingterms(seeChungetal.2003,forare- showshintsforthepresenceofrelativisticparticlesinitsatmo- centreview).Inthisrespect,twosomehowcomplementaryatti- sphere. The main evidence for the presence of a non-thermal tudeshavebeenpursued.On theonehand,onecanappealtoa population of relativistic electrons comes from the observation (setof)underlyinghighenergyprinciplestoconstraintheform of the diffuse radio halo at frequencies νr ∼ 30 MHz−5 GHz ofsupersymmetrybreakingterm,possiblyatsomehighenergy (Deissetal.1997;Thierbachetal. 2003).Theradiohalospec- (often at a grand unification) scale (see e.g. Baeretal.2000). trum can be fitted by a power-law spectrum Jν ∼ ν−1.35 in the The low energy setup is then derived throughthe renormaliza- range 30 MHz-1.4 GHz with a further steepening of the spec- tion group evolution of the supersymmetry breaking parame- trum at higher radio frequencies. The radio halo of Coma has ters down to the electroweak scale. Alternatively, one can di- anextensionofRh ≈ 0.9h−701 Mpc,anditssurfacebrightnessis rectly face the most general possible low energy realization quite flat in the inner 20 arcmin with a radial decline at larger of the MSSM, and try to figure out whether general proper- angulardistances(e.g.,Colafrancescoetal.2005). ties ofsupersymmetryphenomenologycan bederived(see e.g. Otherdiffusenon-thermalemissionshavebeenreportedfor Profumo&Yaguna2004). Coma (as well as for a few other clusters) in the extreme UV In this paper we will resort to both approaches. We will (EUV) and in the hard X-ray (HXR) energybands. The Coma showthatthefinalstateproductsofneutralinopairannihilations fluxobservedinthe65−245eVband(Lieuetal.1996)is∼36% show relatively few spectral patterns, and that any supersym- abovetheexpectedfluxfromthethermalbremsstrahlungemis- metric configuration can be thoughtas an interpolation among sion of the k T ≈ 8.2 keV IC gas (Ensslin&Biermann1998) B the extreme cases we shall consider here. The huge number of and it can be modeled with a power-law spectrum with an ap- free parameters of the general MSSM are therefore effectively proximately constant slope ≈1.75, in different spatial regions decoupled, and the only relevant physical properties are the (Lieuetal.1999; Ensslinetal.1999; Bowyer et al. 2004). The S.Colafrancescoetal.:DMannihilationsinComa 23 EUV excess in Coma has been unambiguously detected and discussion) and in this case the EUV emission should be pro- it does not depend much on the data analysis procedure. The ducedeitherbyadifferentrelativisticelectronpopulationorby integrated flux in the energy band 0.13−0.18 keV is F ≈ a warmthermalpopulationbothconcentratedtowardstheclus- EUV (4.1±0.4)×10−12ergcm−2s−1 (Bowyeretal.2004).According ter center. Lastly, models in which the EUV and HXR emis- to the most recent analysis of the EUVE data (Bowyer et al. sion can be reproduced by synchrotron emission from the in- 2004), the EUV excess seems to be spatially concentrated in teraction of Ultra High Energy cosmic rays and/or photons the inner region (θ <∼ 15−20 arcmin) of Coma (see also (Timokhinetal.2004; Inoueetal.2005) have also been pre- Bonamenteetal.2003). The nature of this excess is not defi- sented.Thesituationisfarfrombeingcompletelyclearandsev- nitely determined since both thermal and non-thermal models eralproblemsstillstandonboththeobservationalandtheoretical areabletoreproducetheobservedEUVflux.However,theanal- sidesoftheissue. ysisofBowyeretal.(2004)seemstofavouranon-thermalori- SinceDMisabundantlypresentinComaandrelativisticpar- ginoftheEUVexcessinComageneratedbyanadditionalpop- ticlesareamongthemainannihilationproducts,weexplorehere ulation of secondary electrons. A soft X-ray (SXR) excess (in theeffectofDMannihilationonthemulti-frequencyspectralen- theenergyrange≈0.1−0.245keV)hasbeenalsodetectedinthe ergydistribution(SED)ofComa.Theplanofthepaperisthefol- outer region(20(cid:4) < θ < 90(cid:4)) of Coma (Bonamenteetal.2003; lowing.WediscussinSect.2theDMhalomodelsfortheComa Finoguenovetal.2003). The spectral features of this SXR ex- cluster,thesetofbestfittingparametersfortheDMdistribution, cessseemtobemoreconsistentwithathermalnatureoftheSXR andthe roleofsub-halos.The annihilationfeaturesof neutrali- emission,whileanon-thermalmodelisnotabletoreproduceac- nosandthemainannihilationproductsarediscussedinSect.3. curately the SXR data (e.g., Bonamenteetal.2003). The SXR The multi-frequency signals of DM annihilation are presented emission from the outskirts of Coma has been fitted in a sce- and discussed in details in Sects. 4 and 5, while the details of narioinwhichthethermalgasatk T ∼ 0.2keVwith∼0.1so- thetransportanddiffusionpropertiesofthesecondaryparticles B e larabundance(see,e.g.Finoguenovetal.2003whoidentifythe aredescribedintheAppendixA,togetherwiththederivationof warmgaswithaWHIMcomponent)residesinthelow-density the equilibrium spectrum of relativistic particles in Coma. The filamentspredictedtoformaroundclustersasaresultoftheevo- conclusionsofouranalysisandthe outlineforforthcomingas- lution of the large-scale web-like structure of the universe(see trophysicalsearches for DM signals in galaxyclusters are pre- Bonamenteetal.2003). It has been noticed, however, that the sentedinthefinalSect.6. WHIM componentcannotreproduce,by itself, the Coma SXR excess because it would producea SXR emission by far lower 2. AΛCDM modelfortheComacluster (seeMittazetal.2004),andthusoneisforcedtoassumealarge amountofwarmgasintheoutskirtsofComa.Thus,itseemsthat To describe the DM halo profile of the Coma cluster we refer, theavailableEUVandSXRdataindicate(atleast)twodifferent asageneralsetup,totheΛCDMmodelforstructureformation, electronpopulations:anon-thermalone,likelyyieldingthecen- implementingresultsofgalaxyclusterformationobtainedfrom trallyconcentratedEUVexcessandathermal(likelywarm)one, N-bodysimulations.Freeparametersarefittedagainsttheavail- providingthe periphericallylocated SXR excess. In this paper, abledynamicalinformationandarecomparedtothepredictions wewillcompareourmodelswiththeEUVexcessonly,whichis of this scheme. Substructures will play a major role when we intimatelyrelatedtoComabeingspatiallyconcentratedtowards will discuss the predictionsfor signals of DM annihilations.In theinnerregionofthecluster. this respect, the picture derived from simulations is less clean There is also evidence of a hard X-ray (HXR) and,hence,wewilldescribeindetailsoursetofassumptions. emission observed towards the direction of Coma with the BeppoSAX-PDS (Fusco-Femianoetal.1999; 2.1.Thedarkmatterhaloprofile Fusco-Femianoetal.2004) and with the ROSSI-XTE experiments (Rephaelietal.1999). Both these measure- TodescribetheDMhaloprofileoftheComaclusterweconsider ments indicate an excess over the thermal emission which the limit in which the mean DM distribution in Coma can be amounts to F(20−80)keV = (1.5 ± 0.5) × 10−11 ergs−1cm−2 regardedassphericallysymmetricandrepresentedbythepara- (Fusco-Femianoetal.2004). It must be mentioned, for the metricradialdensityprofile: sake of completeness, that the HXR excess of Coma is still ρ(r)=ρ(cid:4)g(r/a). (1) controversial(see RossettiandMolendi2004), but, for the aim of our discussion, it could at worst be regarded as an upper Twoschemesareadoptedtochoosethefunctiong(x)introduced limit.ThenatureoftheHXRemissionofComaisnotyetfully here. In the first one, we assume that g(x) can be directly in- understood. ferred as the function setting the universal shape of DM halos Finally,agamma-rayupperlimitof F(>100MeV) ≈ 3.2× found in numerical N-body simulationsof hierarchicalcluster- 10−8 phocm−2 hasbeenderivedforComafromEGRETobser- ing. We are assuming,hence,thatthe DM profileis essentially vations(Sreekumaretal.1996;Reimeretal.2004). unalteredfromthestageprecedingthebaryoncollapse,whichis Thecurrentevidencefortheradio-haloemissionfeaturesof –strictlyspeaking–thepictureprovidedbythesimulationsfor Comahasbeeninterpretedassynchrotronemissionfromapopu- thepresent-dayclustermorphology.Afewformsfortheuniver- lationofprimaryrelativisticelectronswhicharesubjecttoacon- sal DM profile have been proposedin the literature:we imple- tinuousre-accelerationprocesssupposedlytriggeredbymerging mentherethenon-singularform(whichwelabelasN04profile) shock and/or intracluster turbulence (e.g., Brunettietal.2004). extrapolatedbyNavarroetal.(2004): TheEUVandHXRemissionexcessesarecurrentlyinterpreted g (x)=exp[−2/α(xα−1)] with α(cid:5)0.17, (2) N04 as Inverse Compton scattering (ICS) emission from either pri- andtheshapewithamildsingularitytowardsitscenterproposed maryorsecondaryelectrons.Alternativemodelinghasbeenpro- byDiemandetal.(2005)(labeledhereasD05profile): posed in terms of suprathermal electron bremsstrahlung emis- sion for the HXR emission of Coma (see Ensslinetal.1999; 1 g (x)= with γ(cid:5)1.2. (3) Kempner&Sarazin2000, see also Petrosian2001for a critical D05 xγ(1+x)3−γ 24 S.Colafrancescoetal.:DMannihilationsinComa The other extreme scheme is a picture in which the baryon in- as defined implicitly by σ(M (z)) = δ (z), with δ being (cid:2) sc sc fall inducesa largetransferof angularmomentumbetweenthe the critical overdensity required for collapse in the spherical luminousandthedarkcomponentsofthecosmicstructure,with model and σ(M) being the present-day rms density fluctuation significantmodificationoftheshapeoftheDMprofileinitsin- inspherescontainingameanmass M (see,e.g.,Peebles1980). ner region. According to a recent model (El-Zantetal.2001), An expression for δ is given, e.g., in Ekeetal.(1996). The sc baryons might sink in the central part of DM halos after get- rms fluctuation σ(M) is related to the fluctuation power spec- ting clumped into dense gas clouds, with the halo density pro- trumP(k)(seee.g.Peebles1993)by file inthefinalconfigurationfoundtobedescribedbyaprofile (cid:3) (labeled here as B profile) with a large core radius (see, e.g., σ2(M)≡ d3kW˜2(kR)P(k), (8) Burkert1995): g (x)= 1 · (4) where W˜ is the top-hat window function on the scale R3 = B (1+x)(1+x2) 3M/4πρ¯ with ρ¯ the mean (proper) matter density, i.e. ρ¯ = Ω ρ with ρ the critical density. The power spectrum P(k) Once the shape of the DM profile is chosen, the radial den- m c c is parametrized as P(k) ∝ knT2(k) in terms of the primordial sity profile in Eq. (1) is fully specified by two parameters: the length-scale a and the normalization parameter ρ(cid:4). It is, how- power-spectrumshape∝knandofthetransferfunctionT2(k)as- sociatedtothespecificDMscenario.Wefixtheprimordialspec- ever, useful to describe the density profile model by other two tral index n = 1 and we take the transfer function T2(k) given parameters, i.e., its virial mass M and concentration param- vir byBardeenetal.(1986)foran adiabaticCDM model,withthe eter c . For the latter parameter, we adopt here the definition vir shapeparametermodifiedtoincludebaryonicmatteraccording byBullocketal.(2001).WeintroducethevirialradiusR ofa vir totheprescriptionin,e.g.Peacock(1999)(seetheirEqs.(15.84) halo of mass M as the radius within which the mean density ofthehaloiseqvuiraltothevirialoverdensity∆ timesthemean and(15.85))andintroducingamultiplicativeexponentialcutoff backgrounddensityρ¯ =Ω ρ : vir atlargek correspondingtothefree-streamingscaleforWIMPs m c (Hofmann et al. 2001; Chen et al. 2001; Green et al. 2005; 4π Diemand et al. 2005). The spectrum P(k) is normalized to the Mvir ≡ 3 ∆virρ¯R3vir. (5) valueσ8 =0.897aswasquotedabove. The toy model of Bullock et al. (2001) prescribes a one to Weassumeherethatthevirialoverdensitycanbeapproximated one correspondencebetween the density of the Universeat the by the expression (see Bryan&Norman1998), appropriatefor collapseredshiftz ofthe DMhaloanda characteristicdensity c aflatcosmology, ofthehaloattheredshiftz;itfollowsthat,onaverage,thecon- (cid:1) (cid:2) centrationparameterisgivenby 18π2+82x−39x2 ∆vir (cid:5) 1−x , (6) c (M,z)= K1+zc = cvir(M,z=0), (9) with x ≡ Ω (z)−1.Inourcosmologicalsetupwefindatz = 0, vir 1+z (1+z) m ∆ (cid:5) 343 (we refer to Colafrancescoetal.1994, 1997 for a vir with K being a constant (i.e. independent of M and cosmol- general derivation of the virial overdensity in different cosmo- ogy) to be fitted to the results of the N-body simulations. We logicalmodels).Theconcentrationparameteristhendefinedas plot in Fig. 1 the dependence of c on the halo mass M, at vir R R z = 0, according to the toy model of Bullock et al. (2001) as cvir = r−v2ir ≡ x−v2ira, (7) eloxstrmapaodleatoedf WdoIwMnPtso,tih.ee.farreoeu-sntdre1a0m−i6nMgm(cid:3) a(sssesecHaloeffmoarnDnMethaal-. with r−2 the radius at which the effective logarithmic slope of 2001;Chenetal.2001;Greenetal.2005;Diemandetal.2005). the profileis −2. We find that x−2 = 1 forthe N04 profile(see The predictions are compared to the results of a few sets of Eq.(2)),x−2 =2−γforD05profile(seeEq.(3)),andx−2 (cid:5)1.52 N-bodysimulations:weuse“data”pointsandrelativeerrorbars fortheBurkertprofile(seeEq.(4)). fromBullocketal.(2001)(representingabinninginmassofre- Sincethefirstnumericalresultswithlargestatisticsbecame sultsforalargesampleofsimulatedhalos;ineachmassbin,the available (Navarro et al. 1996, 1997), it has been realized that, marker and the error bars correspond,respectively,to the peak at any given redshift, there is a strong correlation between c andthe 68%width inthe c distribution)todeterminethe pa- vir vir and M ,withlargerconcentrationsfoundinlighterhalos.This rameter K. The same value will be used to infer the mean c vir vir trendmaybeintuitivelyexplainedbythefactthatmeanoverden- predictedinourcosmologicalsetup.Other“datasets”referactu- sities in halos should be correlated with the mean background allytodifferentvaluesofσ anddifferentredshiftsz(z=26for 8 densitiesatthetimeofcollapse,andinthehierarchicalstructure thetwominihalosfittedinFig.2ofDiemandetal.2005andfor formationmodelsmallobjectsformfirst,whentheUniversewas the upper bound in the range up to 10M(cid:3) quoted in the same indeeddenser.Thecorrelationbetweenc and M isrelevant paper; z = 3 for the sample from Colin et al. 2004) and have vir vir inourcontextattwolevels:i)whendiscussingthemeandensity been extrapolated,consistentlywith ourprescriptions,to z = 0 profile of Coma and; ii) when including substructures. Hence, andσ8 = 1.Sincesmallobjectstendtocollapseallatthesame wewillreviewthisrelevantissuehereandwewillapplyittothe redshift, the dependenceon mass of the concentrationparame- presentcaseofComa.Bullocketal.(2001)proposedamodelto tersflattensatsmallmasses;themeanasymptoticvaluewefind describethiscorrelation,improvingonthetoymodeloriginally isslightlylargerthanthetypicalvaluesfoundinDiemandetal. outlined in Navarro et al. (1996, 1997). A collapse redshift z (2005),butitisstillconsistentwiththatanalysis. c is assigned, on average,to each halo of mass M at the epoch z Analternativetoy-modeltodescribetherelationbetweenc vir throughthe relation M (z ) ≡ FM. Here it is postulatedthat a and M has been discussed by Eke, Navarro & Steinmetz (Eke (cid:2) c fixedfractionFofM(followingWechsleretal.2001wechoose et al. 2001, hereafter ENS model). The relation they propose F = 0.015) corresponds to the typical collapsing mass M , has a similar scaling in z, but with a different definition of the (cid:2) S.Colafrancescoetal.:DMannihilationsinComa 25 cvir z = 0 cvir 102 σ8 = 1 Colin et al. Diemand et al. 10 10 Bullock et al. 1 Bullock et al. N04 profile ENS Tasitsiomi et al. 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -7 -5 -3 -1 3 5 7 9 11 13 15 10 10 10 10 10 10 10 10M10 [ h10-1 M10 ❍⋅1 ]0 Mvir [ 1015 M ❍⋅ h-1 ] Fig.1.Thedependence ofc onthehalomass M,atz = 0,asinthe cvir vir Bullocketal.toymodel(solidline)andintheENStoymodel(dashed line); predictions are compared to a few sets of simulation results in differentmassranges.Aflat,vacuum-dominatedcosmologywithΩ = M 0.3,ΩΛ =0.7,h=0.7andσ8=1isassumedhere. 10 collapseredshiftz andamilderdependenceofc onM.Inour c vir notation,theydefinez throughtheequation c 1 D(zc)σeff(Mp)= Cσ (10) 1 D05 profile whereD(z)representsthelineartheorygrowthfactor,andσeff is 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 an“effective”amplitudeofthepowerspectrumonscaleM: (cid:4) (cid:5) Mvir [ 1015 M ❍⋅ h-1 ] σeff(M)=σ(M) −ddllnn((Mσ))(M) =−ddMσM (11) Fvaigri.a2b.leWienEshqo.w(1t9h)e,f1oσr,th2eσNaanvdar3roσectoanl.tohuarlsoapsrodfielreiv,eEdq.fr(o2m),(tuhpepχe2rr panel) and for the Diemand et al. halo profile, Eq. (3) (lower panel). whichmodulatesσ(M)andmakesz dependentonboththeam- Alsoshown aremeanvaluesfor thecorrelationbetween Mvir andcvir c asinthetoymodelsofBullocketal.(2001)(solidline)andthatofEke plitude and on the shape of the power spectrum, rather than etal.(2001)(dashedline). just on the amplitude, as in the toy model of Bullock et al. (2001).Finally,inEq.(10),M isassumedtobethemassofthe p halo contained within the radius at which the circular velocity 2.2.FittingthehaloparametersofComa reachesitsmaximum,whileC isafreeparameter(independent σ Foragivenshapeofthehaloprofilewemakeafitoftheparam- of M and cosmology)which we will fit again to the “data” set etersM andc againsttheavailabledynamicalconstraintsfor in Bullocketal.(2001). With such a definition of z it follows vir vir c Coma.We considertwoboundsonthetotalmassofthecluster that,onaverage,c canbeexpressedas: vir at large radii, as inferred with techniques largely insensitive to (cid:4) (cid:5) thedetailsofthemassprofileinitsinnerregion.InGelleretal. ∆ (z )Ω (z) 1/3 1+z c (M,z)= vir c M c· (12) (1999),atotalmass vir ∆ (z)Ω (z ) 1+z vir M c M(r <10h−1Mpc)=(1.65±0.41) ×1015 h−1M(cid:3) (13) As shown in Fig. 1, the dependence of c on M given by vir isderivedmappingthecausticsinredshiftspaceofgalaxiesin- Eq.(12)aboveisweakerthanthatobtainedintheBullocketal. fallinginComaonnearlyradialorbits.Severalauthorsderived (2001)toy-model,withasignificantmismatchintheextrapola- massbudgetsforComausingopticaldataandapplyingthevirial tionalreadywithrespecttothesamplefromColinetal.(2004) theorem,orusingX-raydataandassuminghydrostaticequilib- andanevenlargermismatchinthelowmassend.Moreover,the rium.We considertheboundderivedbyHughes(1989), cross- extrapolation breaks down when the logarithmic derivative of correlatingsuchtechniques: theσ(M)becomesverysmall,intheregimewhenP(k)scalesas k−3.Notealsothatpredictionsinthismodelarerathersensitive M(r <5h−501Mpc)=(1.85±0.25) ×1015 h−501M(cid:3), (14) to the specific spectrum P(k) assumed (in particular the form in the public release of the ENS numerical code gives slightly whereh istheHubbleconstantinunitsof50kms−1Mpc−1. 50 largervaluesofc initslowmassend,aroundavaluec ≈40 Inourdiscussionsomeinformationontheinnershapeofthe vir vir (wecheckedthatimplementingourfittingfunctionforthepower massprofileinComaisalsoimportant:weimplementherethe spectrum,werecoverourtrend). constraintthatcanderivedbystudyingthevelocitymomentsof 26 S.Colafrancescoetal.:DMannihilationsinComa agiventracerpopulationinthecluster.Asthemostreliableob- vir c servablequantityonecanconsidertheprojectionalongtheline ofsightoftheradialvelocitydispersionofthepopulation;under theassumptionofsphericalsymmetryandwithoutbulkrotation, this is related to the total mass profile M(r) by the expression 10 (Binney&Mamon1982): (cid:3) ∞ 2G σ2 (R) = dr(cid:4)ν(r(cid:4))M(r(cid:4))(r(cid:4))2β−2 los I(R) (cid:3) R (cid:4) (cid:5) r(cid:4) R2 r−2β+1 × dr 1−β √ , (15) R r2 r2−R2 1 Burkert profile whereν(r)isthedensityprofileofthetracerpopulationandI(R) represents its surface density at the projected radius R. In the derivationofEq.(15),aconstant-over-radiusanisotropyparam- 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 eterβdefinedas Mvir [ 1015 M ❍⋅ h-1 ] σ2(r) Fig.3.Weshowherethe1σ,2σand3σcontoursasderivedfromtheχ2 β≡1− θ , (16) variableintroducedinthetext,fortheBurkertprofile,Eq.(4). r σ2(r) r hasbeenassumedwithσ2 andσ2 being,respectively,theradial Nonetheless, we have derived in Fig. 2 the 1σ, 2σ and 3σ r θ and tangential velocity dispersion (β = 1 denotes the case of contoursinthe(M , c )planefortheNavarroetal.halopro- vir vir purely radial orbits, β = 0 that of system with isotropic veloc- file (Eq. (2) and for the Diemand et al. halo profile (Eq. (3)). itydispersion,whileβ → −∞labelscircularorbits).Following In Fig. 3 we show the analogouscontoursfor the Burkert pro- Lokas&Mamon(2003),wetakeastracerpopulationthatofthe file (Eq. (4)). In all these cases we have performed the fit of E-S0galaxies,whoseline ofsightvelocitydispersionhasbeen the line-of-sightradial velocitydispersion of E-S0 galaxiesas- mapped,accordingto Gaussian distribution,in nine radialbins suming that this system has an isotropic velocity dispersion, from 4(cid:4) outto 190(cid:4) (see Fig. 3 in Lokas& Mamon 2003), and i.e. we have taken β = 0. Best fitting values are found at whosedensityprofilecanbedescribedbythefittingfunction: Mvir (cid:5)0.9×1015M(cid:3) h−1andcvir (cid:5)10(thatweconsider,hence, as reference values in the following analysis), not too far from 1 ν(r)∝ , (17) themeanvalueexpectedfrommodelssketchingthecorrelation (r/rS)(1+r/rS)2 betweenthesetwoparametersintheΛCDMpicture.Weshowin with r = 7.(cid:4)05. Constraints to the DM profile are obtained Figs.2and3thepredictionsofsuchcorrelationinthemodelsof S Bullocketal.(solidline)andofEkeetal.(2001)(dashedline). throughitscontributionto M(r),inwhichweincludetheterms due to spiral and E-S0 galaxies (each one with the appropriate density profile normalized to the observed luminosity through 2.3.SubstructuresintheComacluster an appropriate mass-to-light ratio), and the gas component (as Since the astrophysical signals produced by WIMP pair anni- inferred from the X-ray surface brightness distribution) whose hilation scale with the square of the WIMP density, any local numberdensityprofilecanbedescribedbythefittingfunction: overdensitydoesplayarole(seee.g.Bergstrometal.1999,and ⎡ (cid:4) (cid:5) ⎤ n(r)=n ⎢⎢⎢⎢⎢⎣1+ r 2⎥⎥⎥⎥⎥⎦−1.5b, (18) raenfaelroegnocuessltyhteoretihne).gTeonedriasclupsicstsuurbesitnrutrcotduurecsedinatbhoevCeofmoraDclMushtear-, 0 rc los,welabelasubhalothroughitsvirialmassMsanditsconcen- trationparameterc (orequivalentlyatypicaldensityandlength with n0 = 3.42 × 10−3 cm−3, rc = 10.(cid:4)5 and b = 0.75 scale,ρ(cid:4)sandas).Thsesubhaloprofileshapeisconsideredhereto (Brieletal.1992). besphericalandofthesameformasfortheparenthalo.Finally, Tocompareamodelwithsuchdatasets,webuildareduced as for the mean DM density profile, the distribution of subha- χ2-likevariableoftheform: los in Coma is taken to be spherically symmetric.The subhalo (cid:12) number density probabilitydistribution can then be fully spec- χ2 = 1 1(cid:13)2 (M(r<ri)−Mi)2 ified through Ms, cs and the radial coordinate for the subhalo r 2 2 (∆M)2 position r. To our purposes,it is sufficientto consider the sim- i=1 i (cid:1) (cid:2) plifiedcasewhenthedependenceonthesethreeparameterscan +1(cid:13)9 σlos(Rj)−σljos 2(cid:14) (19) befactorized,i.e.: 9 j=1 (∆σljos)2 dr3ddMns dc = ps(r)ddMns (Ms)Ps(cs). (20) s s s wheretheindexiinthefirstsumrunsovertheconstraintsgiven Herewehaveintroducedasubhalomassfunction,independent inEqs.(13)and(14),while,inthesecondsum,we includethe ofradius,whichisassumedtobeoftheform: nine radial bins over which the line of sight velocity disper- ⎡ (cid:4) (cid:5) ⎤ stiimonatoedf.EW-Se0igghatlfaaxciteosrsanhdavietsbseteanndaadrddeddetvoiagtiivoenthhaessabmeeensetas-- dns = A(Mvir)exp⎢⎢⎢⎢⎢⎣− Ms −2/3⎥⎥⎥⎥⎥⎦, (21) dM M1.9 M tistical weight to each of the two classes of constraints, see, s s cut e.g., Dehnen&Binney(1998) where an analogous procedure Diemand et al. (2005) where M is the free streaming cutoff cut hasbeenadopted. mass(Hofmannetal.2001;Chenetal.2001;Greenetal.2005; S.Colafrancescoetal.:DMannihilationsinComa 27 Diemandetal.2005),whilethenormalizationA(M )isderived distributiondNf/dE,andN (r)isthenumberdensityofneu- vir i pairs imposing that the total mass in subhalos is a fraction f of the tralino pairs at a given radius r (i.e., the number of DM par- s totalvirialmassM oftheparenthalo,i.e. ticles pairs per volume element squared). The particle physics vir (cid:3) frameworksets the quantity(cid:12)σv(cid:13) and the list of B . Since the MvirdM dns M = f M . (22) neutralino is a Majorana fermion0light fermion finafl states are sdM s s vir suppressed, while – dependingon mass and composition – the Mcut s dominantchannelsareeitherthosewithheavyfermionsorthose AccordingtoDiemandetal.(2005), f isabout50%foraMilky s with gauge and Higgs bosons. The spectral functions dNf/dE Way size halo, and we will assume that the same holds for i are inferred from the results of MonteCarlo codes, namely Coma. The quantity P (c ) is a log-normaldistribution in con- s s thePythia(Sjöstrand1994,1995;Sjöstrandetal.2003)6.154, centrationparametersaroundameanvaluesetbythesubstruc- as included in the DarkSUSY package (Gondoloetal.2004). ture mass; the trend linking the mean c to M is expected to s s Finally,N (r)isobtainedbysummingthe contributionfrom be analogous to that sketched above for parent halos with the pairs the smooth DM component,which we write here as the differ- Bullocketal.orENStoymodels,exceptthat,onaverage,sub- encebetweenthecumulativeprofileandthetermthatatagiven structurescollapsedinhigherdensityenvironmentsandsuffered radiusisboundinsubhalos,andthecontributionsfromeachsub- tidalstripping.Bothoftheseeffectsgointhedirectionofdriving halo,inthelimitofunresolvedsubstructuresandinviewofthe largerconcentrations,asobservedinthenumericalsimulationof factthatweconsideronlysphericallyaveragedobservables: Bullocketal.(2001),whereitisshownthat,onaverageandfor (cid:12) M ∼5×1011M(cid:3) objects,theconcentrationparameterinsubha- (ρ(cid:4)g(r/a)− f M p (r))2 losisfoundtobeafactorof≈1.5largerthanforhalos.Wemake N (r) = s vir s pairs 2M2 herethesimplifiedansazt: (cid:3) χ (cid:3) dn (cid:15) (cid:16) (cid:12)cs(Ms)(cid:13)= Fs(cid:12)cvir(Mvir)(cid:13) with Ms = Mvir, (23) +ps(r) dMsdMs dcs(cid:4) Ps cs(cid:4)(Ms) (cid:3) (cid:15) s (cid:16) (cid:14) dwoheesren,oftordesipmenpdlicointy,Mwse. FasoslulomweinthgaatgthaeinenBhualnloccekmeetnatlf.a(c2t0o0r1F)s, × d3rs ρ(cid:4)sg2(rMs/2as) 2 · (27) the1σdeviation∆(log c )aroundthemeaninthelog-normal χ 10 s distribution Ps(cs), is assumed to be independentof Ms and of Thisquantitycanberewritteninthemorecompactform: cosmology,andtobe,numerically,∆(log10cs)=0.14. (cid:12) Finally, we have to specify the spatial distribution of sub- ρ¯2 (ρ(cid:4)g(r/a)− f ρ˜ g(r/a(cid:4)))2 N (r) = s s structureswithinthecluster.Numericalsimulations,tracingtidal pairs 2M2 ρ¯2 stripping, find radial distributions which are significantly less χ (cid:14) ρ˜ g(r/a(cid:4)) concentrated than that of the smooth DM component. This ra- +f ∆2 s , (28) dialbiasisintroducedhereassumingthat: s ρ¯ p (r)∝g(r/a(cid:4)), (24) where we have normalized densities to the present-day mean s matter density in the Universe ρ¯, and we have defined the withgbeingthesamefunctionalformintroducedaboveforthe quantity: parenthalo,butwitha(cid:4)muchlargerthanthelengthscaleafound (cid:17) for Coma. Following Nagai&Kravtsov(2005), we fix a(cid:4)/a (cid:5) dM dns M ∆2 (M ) 7. Since the fraction fs of DM in subhalos refers to structures fs∆2 ≡ sdMMs s Ms s (29) withinthevirialradius,thenormalizationof p (r)followsfrom (cid:17) vir s t4hπe(cid:3)reqRvuirirre2mpe(nr)t=1. (25) = fs dM(cid:17)sdddMMnsssMddMns∆ssM2Mss(Ms), (30) s 0 with (cid:3) 3. NeutralinoannihilationsinComa ∆2Ms(Ms)≡ ∆vi3r(z) dcs(cid:4) Ps(cid:15)cs(cid:4)(cid:16)[II12((ccs(cid:4)s(cid:4)xx−−22))]2(cs(cid:4)x−2)3 (31) 3.1.Statisticalproperties and Havingset thereferenceparticlephysicsframeworkandspeci- (cid:3) x (cid:18) (cid:19) fiedthedistributionofDMparticles,wecannowintroducethe I (x)= dyy2 g(y) n. (32) n sourcefunctionfromneutralinopairannihilations.Foranysta- 0 ble particle speciesi, generatedpromptlyin the annihilationor Suchdefinitionsareusefulsince∆2 givestheaverageenhance- produced in the decay and fragmentation processes of the an- Ms nihilationyields, the source function Qi(r,E) givesthe number mentinthesourceduetoasubhaloofmass Ms,while∆2 isthe ofparticlesperunittime,energyandvolumeelementproduced sumoverallsuchcontributionsweightedoverthesubhalomass locallyinspace: functiontimesmass.Finally,inEq.(28)wehavealsointroduced thequantity: (cid:13)dNf Qi(r,E)=(cid:12)σv(cid:13)0 f dEi (E)Bf Npairs(r), (26) ρ˜s ≡ 4π(a(cid:4))3MI1vi(rRvir/a(cid:4))· (33) where (cid:12)σv(cid:13) is the neutralino annihilation rate at zero temper- In the limit in which the radial distribution of substructures 0 ature. The sum is over all kinematically allowed annihilation tracestheDMprofile,i.e.a(cid:4) = a,ρ˜ becomesequaltothehalo s final states f, each with a branching ratio B and a spectral normalizationparameterρ(cid:4). f 28 S.Colafrancescoetal.:DMannihilationsinComa Ms 108 comesinsteadfromlargeradii.Thismeansthattheenhancement 2∆ B. et al., Fs = 2 σ8 = 0.89 fromsubhaloslargelyinfluencestheresultswhentheneutralino 107 sourceisextended.Thisisthecaseofgalaxyclusters,andmore specificallyoftheComaclusterwhichisourtargetinthispaper. 106 B. et al., F = 1 3.2.Sourcefunctionsspectralproperties:generalities s 105 andsupersymmetricbenchmarks 104 ENS, Fs = 1 Ttiohnesspdeecpternadl pornolpye,rptireisoroftosedciffonudsiaornyapnroddeuncetsrgoyflDosMsesa,nnoinhitlhae- N04 DM particle mass M and on the branchingratio BR(χχ → f) χ 103 D05 forthefinalstate f intheDMpair-annihilation.TheDMparticle Burkert physicsmodelfurthersetsthemagnitudeofthethermallyaver- 102 agedpairannihilationcrosssectiontimestherelativeDMparti- 10-710-510-310-1 10 103 105 107 109101110131015 clesvelocity,(cid:12)σv(cid:13) atT =0. 0 Ms [ M ❍⋅ ] The range of neutralino masses and pair annihilation cross sections in the most general supersymmetric DM setup Fig.4.Scalingoftheaverageenhancementinsourcefunctionsduetoa is extremely wide. Neutralinos as light as few GeV (see subhaloofmass M.Weshowresultimplementingthethreehalopro- s Bottinoetal.2003) and as heavy as hundreds of TeV (see filesintroduced,i.e.theN04,D05andBurkertprofile,thetwotoymod- Profumo2005) can account for the observed CDM density elsforthescalingofconcentrationparameterwithmass,i.e.theBullock et al. and the ENS, and two sample values of the ratio between con- throughthermalproductionmechanisms,andessentiallynocon- centrationparameterinsubhalostoconcentrationparameterinhalosat straintsapplyinthecaseofnon-thermallyproducedneutralinos. equalmassF . Turning to the viable range of neutralino pair annihilation s cross sections, coannihilation processes do not allow us to set anylowerbound,whileonpurelytheoreticalgroundsageneral (cid:1) (cid:2) menWt∆e2MsshionwtheinsoFuirgc.e4funthcetiosncavleirnsgusotfhethsuebahvaeloramgeasesnMhas.nWcee- (uPprpoefrulmimoi2t0o0n5(cid:12))σ.vT(cid:13)h0e<∼o1n0ly−2g2enTMeerVχal−a2rcgmum3/esnhtawshbiecehntireescethnetlyresleict haveconsideredthethreehalomodelsintroducedintheprevious abundanceofaWIMPwithitspairannihilationcrosssectionis section, i.e. the N04, D05 and Burkertprofiles, for the two toy givenbythenaiverelation models describing the scaling of concentration parameter with mass,i.e.theBullocketal.andtheENSschemes,aswellastwo 3×10−27cm3/s psaamrapmleetvearluinessfuobrhtahleosraatinodFthsabtetiwneheanlotsheoafveeqruaaglemcoanscs.enIntraetaiochn Ωχh2 (cid:5) (cid:12)σv(cid:13)0 (34) setup,goingtosmallerandsmallervaluesofM ,theaverageen- s (see Jungmanetal.1995, Eq. (3.4)), which points at a fidu- hancement∆2Ms increasesandthenflattensoutatthemassscale cial value for (cid:12)σv(cid:13)0 (cid:5) 3 × 10−26cm3/s for our choice of cos- below which all structures tend to collapse at the same epoch, mological parameters. The above mentioned relation can be, andhencehaveequalconcentrationparameter. however, badly violated in the general MSSM, or even within In Fig. 5 we show the scaling of the weighted enhance- minimalsetups,suchastheminimalsupergravityscenario(see ment∆2 in thesourcefunctiondueto subhalosversustheratio Profumo2005). between concentration parameter in subhalos to concentration SincethirdgenerationleptonsandquarksYukawacouplings parameterinhalosatequalmassF ;wegiveresultsfortheusual s are always much larger than those of the first two genera- setofhaloprofilesconsideredin ourapproach.Analogouslyto tions, and being the neutralinoa Majorana fermion,the largest theenhancementforafixedmassshowninthepreviousplot,∆2 BR(χχ → f) for annihilations into a fermion-antifermionpair isverysensitivetothescalingoftheconcentrationparameterand areinmostcases1intothethirdgenerationfinalstatesbb,ttand hence we find a sharp dependence of ∆2 on Fs. The fractional τ+τ−. In the context of supersymmetry, if the supersymmetric contributionperlogarithmicintervalinsubhalomassM to∆2is s partners of the above mentioned fermions are not significantly also showninFig. 5forfoursamplecases. Notethat,although different in mass, the τ+τ− branching ratio will be suppressed, thefactorizationintheprobabilitydistributionforclumpsinthe with respect to the bb branching ratio by a color factor equal radialcoordinateandmass(plustheassumptionthatF doesnot s to 1/3, plus a possible further Yukawa coupling suppression, depend on mass) are a crude approximation,what we actually sincethetwofinalstatessharethesameSU(2)quantumnumber needinourdiscussionisF andtheradialdistributionforsubha- s assignment. Further, the fragmentation functions of third gen- losatthepeakofthedistributionshowninFig.5:unfortunately eration quarks are very similar, and give rise to what we will wecannotreadoutthisfromnumericalsimulations. dubinthefollowingasa“softspectrum”.Asecondpossibility, Figure 6 shows the number density of neutralino pairs (we setheretheneutralinomassto M = 100GeV)asafunctionof when kinematically allowed, is the pair annihilation into mas- χ sivegaugebosons2,W+W− andZ Z .Again,thefragmentation the distance from the center of Coma for the three representa- 0 0 functionsforthesetwofinalstatesaremostlyindistinguishable, tivehaloprofilesintroducedhere,i.e.theN04,D05andBurkert profileintheirbestfitmodel,andasampleconfigurationforthe 1 Models with non-universal Higgs masses at the GUT scale can subhalo parameters. For the D05 and N04 profiles, the central give instances of exceptions to thisgeneric spectral pattern, featuring enhancementincreases the integratedsourcefunctionby a fac- lightfirstandsecondgenerationsfermions(seee.g.Baeretal.2005b, tor ≈6 with respect to the Burkert profile, but this takes place 2005c). on sucha small angularscale thatfromthe observationalpoint 2 The direct annihilation into photons is loop suppressed in ofviewitislikeaddingapointsourceatthecenteroftheclus- supersymmetric models (see e.g. Bergstrom&Snellman1988; and ter. Theenhancementof the annihilationsignalsfromsubhalos Bergstrom&Ullio1997). S.Colafrancescoetal.:DMannihilationsinComa 29 0.12 2 2 ∆ 108 σ8 = 0.89 ∆o N04 profile Fs = 1 n t 0.1 Fs = 2 o 107 ti Bullock et al. ENS u b ri 0.08 t n 106 o c B. et al. al 0.06 ti r 105 pa 0.04 ENS N04 104 D05 0.02 Burkert 103 0 -7 -5 -3 -1 3 5 7 9 11 13 15 1 10 10 10 10 10 10 10 10 10 10 10 10 10 Fs ≡ 〈 cs 〉 / 〈 cvir 〉 Ms [ M ❍⋅ ] Fig.5.Left:scalingoftheweightedenhancementinsourcefunctionsduetosubhalosversustheratiobetweenconcentrationparameterinsubhalos toconcentrationparameterinhalosatequalmassF .Resultsareshownthethreehaloprofilesintroduced,i.e.theN04,D05andBurkertprofile, s thetwotoymodelsforthescalingofconcentration parameterwithmass,i.e.theBullocketal.andtheENS.Right:fractionalcontributionper logarithmicintervalinsubhalomassM to∆2infoursamplecases.Anormalizationofthefluctuationspectrumσ =0.89isadopted. s 8 -6 [ cm ]airs11001---321 N0D405 BMu vlilro =c k9. (cid:127)e t1 a0l1.,4 fhs -1= M50 ❍%⋅ ,, cF vs ir= = 2 10 -1-3-1V cm s]1100--2265 W+ W− σNv p a=ir s1 =0 -126 c cmm-63 s-1 Np10 Ge -27 10--54 E) [ 10 τ+ τ− 10-6 Burkert Q (e10-28 10 R radio 10-7 10-29 -8 R vir 10 -30 – -9 total 10 Mχ = 100 GeV b b 10 smooth -10 subhalos -31 10 10 1 10 102 103 10-2 10-1 1 r [ kpc ] E / Mχ Fig.6. Thenumber densityof neutralinopairs(neutralinomassset to Fig.7.Thespectralshapeoftheelectronsourcefunctionincaseofthree M = 100 GeV) as a function distance for the center of Coma for samplefinalstates(seetextfordetails). χ the threehaloprofilesintroduced, i.e.the N04, D05and Burkert pro- fileintheirbestfitmodel,andasampleconfigurationforthesubhalo parameters. give a neutralino thermal relic abundance exactly match- ing the central cosmologically observed value. To this ex- tent, we refer to the so-called minimal supergravity model (Goldberg1983;Ellisetal.1983,1984),perhapsoneofthebet- and will be indicated as giving a “hard spectrum”. The occur- rence of a non-negligible branching fraction into τ+τ− or into terstudiedparadigmsoflow-energysupersymmetry,whichen- ables, moreover, a cross-comparison with numerous dedicated lightquarkswillgenerallygiveraisetointermediatespectrabe- studies,rangingfromcolliders(Baeretal.2003)toDMsearches tweenthe“hard”and“soft”case. (Edsjoetal.2004;Baeretal.2004). Figure 7 shows the spectral shape of the electron source The assumptions of universality in the gaugino and in the function in the case of the three sample final states bb, τ+τ− scalar (masses and trilinear couplings) sectors remarkably re- and W+W− for Mχ = 100 GeV, and clarifies the previous dis- duce, in this model, the number of free parameters of the gen- cussion. In what followswe will thereforeemploysample DM eral soft SUSY breaking Lagrangian(Chungetal.2003) down configurations making use of either soft (bb) or hard (W+W−) to four continuous parameters (m , M ,A ,tanβ) plus one 0 1/2 0 spectra,keepinginmindthatotherpossibilitieswouldlikelyfall sign (sign(µ)). The mSUGRA parameter space producing a inbetweenthesetwoextrema. sufficiently low thermal neutralino relic abundance Ω h2 has χ In order to make a more stringent contact with supersym- been shown to be constrainedto a handfulof “regions”featur- metry phenomenology, we will however also resort to real- ing effective Ω h2 suppression mechanisms (Ellisetal.2003). χ istic benchmark SUSY models: by this we mean thoroughly The latter are coannihilations of the neutralino with the next- defined SUSY setups which are fully consistent with ac- to-lightest SUSY particle (“Coannihilation” region), rapid an- celerator and other phenomenological constraints, and which nihilations through s channel Higgs exchanges (“Funnel” 30 S.Colafrancescoetal.:DMannihilationsinComa Table1.TheinputparametersofthefourmSUGRAbenchmarkmodels energiesE >∼ 1GeVandthisemissionisdirectlyradiatedsince weconsiderhere.TheunitsforthemassparametersareGeV,andthe the π0 → γγ e.m. decay is very fast. This gamma-ray emis- universal trilinearcoupling A0 issetto0forallmodels(seeBattaglia sion is dominant at high energies, >∼0.3−0.5 of the neutralino etal.2004,fordetails). mass, but needs to be complemented by other two emission mechanisms which produce gamma-rays at similar or slightly Model M1/2 m0 tanβ sign(µ) mt lowerenergies:thesearetheICSandthebremsstrahlungemis- B(cid:4)(Bulk) 250 57 10 >0 175 sionbysecondaryelectrons.Wewilldiscussthefullgamma-ray D(cid:4)(Coann.) 525 101 10 >0 175 emission of Coma induced by DM annihilation in Sect. 4 be- E(cid:4)(FocusP.) 300 1653 10 >0 171 K(cid:4)(Funnel) 1300 1070 46 <0 175 low. Secondaryelectronsare producedthroughvariousprompt generationmechanismsandbythedecayofchargedpions(see, e.g.,Colafrancesco&Mele2001).Infact,chargedpionsdecay through π± → µ±ν (ν¯ ), with µ± → e± + ν¯ (ν ) + ν (ν¯ ) and region),theoccurrenceoflightenoughneutralinoandsfermions µ µ µ µ e e produce e±, muons and neutrinos. Electrons and positrons are masses (“Bulk” region) and the presence of a non-negligible producedabundantlybyneutralinoannihilation(seeFig.8,left) bino-higgsinomixing(“FocusPoint”region). andaresubjecttospatialdiffusionandenergylosses.Bothspa- With the idea of allowing a direct comparison with the ex- tialdiffusionandenergylossescontributetodeterminetheevo- isting research work in a wealth of complementary fields, we lution of the source spectrum into the equilibrium spectrum of restrict ourselves to the “updated post-WMAP benchmarks for these particles, i.e. the quantity which will be used to deter- supersymmetry”proposedandstudiedbyBattagliaetal.(2004). minetheoverallmulti-wavelengthemissioninducedbyDMan- Allofthosesetupsaretunedsoastofeatureaneutralinothermal nihilation.Thesecondaryelectronseventuallyproduceradiation relicdensitygivingexactlythecentralWMAP-estimatedCDM bysynchrotroninthemagnetizedatmosphereofComa,Inverse density3. As a preliminary step, we computed the electrons, Compton Scattering of CMB (and other background) photons neutrinos, gamma-rays and protons source spectra for all the 13A(cid:4)-M(cid:4)models.Remarkablyenough,althoughtheSUSYpar- and bremsstrahlung with protons and ions in the atmosphere oftheComacluster(see,e.g.,Colafrancesco&Mele2001;and ticlespectrumisratherhomogeneousthroughoutthemSUGRA Colafrancesco2003, 2006,for a review). These secondarypar- parameterspace,theresultingspectraexhibitatleastthreequal- ticles also produceheatingofthe intra-clustergasby Coulomb itatively different shapes, according to the dominant final state collisionswiththeintra-clustergasparticlesandSZeffect(see, in neutralino pair annihilation processes. In particular, in the e.g. Colafrancesco2003, 2006). Other fundamental particles Bulk and Funnel regions the dominant final state is into bb¯, and,withasub-dominantvariablecontribution,τ+τ−.Thelatter which mighthave astrophysicalrelevance are also producedin DMannihilation.Protonsareproducedinasmallerquantitywith channel is instead dominant, for kinematic reasons, in the stau respectto e± (see Fig. 9, right),butdo notloose energyappre- Coannihilation region.Finally, a third, and last, possibility is a ciablyduringtheirlifetimewhiletheycandiffuseandbestored dominantgauge bosons final state, which is the case along the intheclusteratmosphere.Theseparticlescan,inprinciple,pro- FocusPointregion.Inthisrespect,intheefforttoreproduceall duce heating of the intra-cluster gas and pp collisions provid- ofthementionedspectralmodes,andtoreflecteverycosmolog- ing,again,asourceofsecondaryparticles(pions,neutrinos,e±, ically viable mSUGRA region,we focused on the four models muons,...)incompleteanalogywiththesecondaryparticlepro- indicated in Table 1, a subset of the benchmarks of Battaglia ductionbyneutralinoannihilation.Neutrinosarealsoproduced et al. (2004) (to which we refer the reader for further details). in the process of neutralino annihilation (see Fig. 9, left) and We collect in Table 2 the branching ratios for the final states propagatewithalmostnointeractionwiththematteroftheclus- of neutralinopairannihilations.In the lastcolumnofthistable ter.However,theresultingfluxfromComaisfoundtobeunob- we also provide the thermally-averagedpair annihilation cross servablebycurrentexperiments. sectiontimestherelativevelocity,atT =0,(cid:12)σv(cid:13) .Table2isan 0 To summarize, the secondary products of neutralino anni- accurateguidelinetointerprettheresultingsourcespectraforthe hilationwhichhavethemostrelevantastrophysicalimpactonto fourbenchmarksunderconsiderationhere,whichare shownin themulti-frequencyspectralenergydistributionofDMhalosare Figs.8and9.Figure8showsinparticularthedifferentialelec- neutralpionsandsecondaryelectrons. tron (left) and photon (right) yields per neutralino annihilation multiplied by(cid:12)σv(cid:13) , i.e. the sourcefunction Q(r,E) dividedby 0 thenumberdensityofneutralinopairsNpairs(r)asafunctionof 4. Neutralino-inducedsignals theparticles’kineticenergy.Asmentionedabove,theBulkand Funnelcasesareverysimilarbetweeneachother,thoughinthe AcompletedescriptionoftheemissionfeaturesinducedbyDM lattercaseonehasaheavierspectrumandalargervalueof(cid:12)σv(cid:13) . must take, consistently, into account the diffusion and energy- 0 Figure9showsthesamequantityforneutrinosandprotons. loss propertiesofthese secondaryparticles.Thesemechanisms The productsof the neutralinoannihilationwhichare more are taken into account in the following diffusion equation (i.e. relevanttoourdiscussionaresecondaryelectronsandpions.The neglectingconvectionandre-accelerationeffects): (cid:12) (cid:14) (cid:12) (cid:14) secondaryparticlesproducedbyneutralinoannihilationaresub- ∂ dn dn ∂ dn ject to various physical mechanisms: i) decay (which is espe- e = ∇ D(E,x)∇ e + b(E,x) e cially fast for pions and muons); ii) energy losses which can ∂t dE dE ∂E dE be suffered by stable particles, like electrons and positrons; +Q (E,x), (35) e iii) spatial diffusion of these relativistic particles in the atmo- wheredn /dE istheequilibriumspectrum,D(E,x)isthediffu- sphere of the cluster. Gamma-rays produced by neutral pion e decay, π0 → γγ, generate most of the continuum spectrum at sion coefficient, b(E,x) is the energyloss term and Qe(E,x) is thesourcefunction.Theanalyticalsolutionofthisequationfor 3 Weadjustedherethevaluesofm giveninBattagliaetal.(2004) thecaseoftheDMsourcefunctionisderivedintheAppendixA. 0 inordertofulfillthisrequirementmakinguseofthelatestIsajetv.7.72 Inthelimitinwhichelectronsandpositronsloseenergyon releaseandoftheDarkSUSYpackage(Edsjoetal.2003,seeTable1). atimescalemuchshorterthanthetimescaleforspatialdiffusion,

Description:
gas, but not sufficient energy injection as to explain the quenching of cooling flows in the innermost region of clusters. Due to . metric WIMPs (see, e.g., Baltz 2004; Bertone et al tinuous re-acceleration process supposedly triggered by merging shock and/or intracluster turbulence (e.g., Brunetti
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.