ebook img

Multi-block computations and turbulence modeling for turbomachinery flows PDF

187 Pages·1996·6.9 MB·English
by  LiuJian
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-block computations and turbulence modeling for turbomachinery flows

MULTI-BLOCKCOMPUTATIONSANDTURBULENCEMODELING FORTURBOMACHINERYFLOWS By JIANLIU ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOLOF THEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA ACKNOWLEDGEMENTS Iwouldliketoexpressmydeepestappreciationtomyadvisor,ProfessorWeiShyy, for his advice, encouragement, friendship and constant support. I have benefitted substantially fromhisexperience,knowledgeandphilosophy,bothprofessionallyand personally. Without his enthusiasm and commitment to this challenging project, my explorationinthisworkcouldnothavebeenaccomplished. Iwouldalsoliketosincerelythankmycommitteemembers,ProfessorsChen-Chi Hsu,UlrichH.Kurzweg,BernardM.LeadonandKermitN.Sigmonfortheirteaching, supportandencouragementthroughoutmytimeattheUniversityofFlorida. VeryspecialthanksaregiventoallmycolleaguesintheCFDgroup,especially, JeffreyWright,MadhukarRao,S.S.Thakur,RichardSmith,H.S.Udaykumar,Venkata Krishnamurty,Shin-JyeLiang,andEdwinBlosch,fortheirdirectandindirectcontributions IamgratefulandfortheirgenuinefriendshipIenjoy. Iwouldalsoliketothankmy colleaguesGuobaoGuoandGuang-WuChenfortheirhelpinmanyaspects. Lastbutnotleast,Iamdeeplyindebtedtomywife,Jie,forherunderstanding, encouragementandsupportinbothmyacademicpursuitsandlifeingeneral. ii TABLEOFCONTENTS pages ACKNOWLEDGEMENTS ii ABSTRACT vi CHAPTERS 1 INTRODUCTION 1 2 PRESSURE-BASEDMETHODFORTHENAVTER-STOKES EQUATIONS 5 2.1GoverningEquations 5 2.2DiscretizationoftheMomentumEquations 6 2.2.1First-OrderUpwindScheme 9 2.2.2CentralDifferenceScheme 10 2.2.3Second-OrderUpwindScheme 11 2.3DiscretizationofthePressureCorrectionEquation 12 2.4PhysicalBoundaryConditions 14 2.4.1BoundaryConditionsfortheMomentumEquations 14 2.4.2BoundaryConditionsforthePressureCorrectionEquation ... 15 2.5TheSolutionProcedure 16 2.6ConcludingRemarks 17 3 MULTI-BLOCKMETHODFORTHENAVTER-STOKESEQUATIONS 18 3.1Background 18 3.2NotationofMulti-BlockGrids 21 3.3AnalysisofModelEquations 21 3.3.1 1-DPoissonEquation 21 3.3.22-DPoissonEquation 25 3.3.31-DConvection-DiffusionEquation 27 3.4AnalysisoftheNaiver-StokesEquations 28 3.5Multi-BlockInterfaceTreatmentsfortheNavier-StokesEquations.. 30 3.5.1Multi-BlockGridArrangement 30 3.5.2InterfaceTreatmentfortheMomentumEquations 31 iii 3.5.3InterfaceTreatmentforthePressureCorrectionEquation 34 3.5.4InterfaceTreatmentforMassFlux 39 3.6SolutionMethods 42 3.7SolutionStrategyfortheNavier-StokesEquations onMulti-BlockGrids 43 3.7.1SolutionProcedureforSingleBlockComputations 43 3.7.2SolutionProcedureforMulti-BlockComputations 44 3.7.3ConvergenceCriterion 45 3.8ConcludingRemarks 46 4 DATASTRUCTURES 48 4.1GeneralInterfaceOrganization 48 4.2Interpolation 48 4.2.1GridVertexBasedInterpolation 49 4.2.2GridFaceCenterBasedInterpolation 52 4.3InterpolationwithLocalConservativeCorrection 54 4.3.1GridCellSplit 55 4.3.2FluxInterpolation 58 4.3.3LocalFluxCorrection 59 4.4ConcludingRemarks 61 5 ASSESSMENTOFTHEINTERFACETREATMENTS 63 5.1AssessmentsofConservativeTreatmentsintheN-NBoundary ConditionforthePressureCorrectionEquation 63 5.2ComparisonofTwoDifferentInterfaceConditions forthePressureCorrectionEquation 75 5.3SimulationsoftheHydraulicTurbineDistributorFlows 79 5.3.1CaseA:5Blades 79 5.3.2CaseB:4Blades 81 5.4ConcludingRemarks 85 6 TWO-EQUATIONTURBULENCEMODELINGWITH NON-EQUILIBRIUMEFFECT 88 6.1Background 88 6.2TurbulentTransportEquations 92 6.2.1Reynolds-StressTransportEquation 92 6.2.2K-eTransportEquations 93 6.3ImplementationoftheK-eModelfor2-DFlow 95 6.3.1BoundaryConditionsandWallTreatment 96 iv 6.3.2ImplementationoftheWallShearStressin MomentumEquations 99 6.3.3ImplementationoftheK-eEquationsnearWallBoundaries ... 102 6.4TurbulenceModelingforNon-Equilibrium Flows 104 6.5CaseStudies 107 6.5.1BackwardFacingStepFlow 107 6.5.2HillFlowInsideaChannel Ill 6.5.33-DDiffuserFlow 121 6.6ConcludingRemarks 122 7 TWO-EQUATIONTURBULENCEMODELINGWITH ROTATIONALEFFECT 129 7.1Background 129 7.2TheMomentumandTurbulentTransportEquations 131 7.3TheoreticalAnalyses 134 7.3.1DisplacedParticleAnalysis 134 7.3.2SimplifiedReynolds-StressAnalysis 137 7.4TheModelwithRotationalEffect 140 7.5AssessmentoftheModifiedModel 142 7.5.1RotatingChannelFlow 142 7.5.2RotatingBackwardFacingStepFlow 147 7.5.3FlowSimulationinATorqueConverter 162 7.6ConcludingRemarks 164 8 SUMMARYANDSUGGESTIONSFORFUTUREWORK 168 REFERENCE 171 BIOGRAPHICALSKETCH 178 AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy MULTI-BLOCKCOMPUTATIONSANDTURBULENCEMODELING FORTURBOMACHINERYFLOWS By JianLiu May1996 Chairperson:WeiShyy MajorDepartment:AerospaceEngineering,MechanicsandEngineeringScience Turbomachineryflowsareencounteredinmanyindustrialdevices.Tosuccessfully analyzetheflowbehavior,bothnumericaltreatmentsregardinggriddingtechniquesin complexgeometries,andphysicalmodelingregardingrotatingturbulenceclosures,needto be developed. In this work, a pressure-based multi-block grid method for solving incompressibleviscousflowsincomplexgeometriesispresented.Themethodemploysa finitevolumeapproachandastaggeredgrid, andsolvesthegoverningequationsina sequentialmanner.Issuesregardingdiscontinuousgridinterfacetreatmentforsolvingthe Navier-Stokes equations in multi-block domain are investigated. For the momentum equations,thedependentvariablesbetweenblockscanbedirectlyinterpolated.Forthe pressurecorrectionequation,itisfoundthatwiththelocalconservativeinterfacemassflux treatment with certain degree of accuracy, both the Neumann-Neumann and Neumann-Dirichlet boundaryconditionscanyieldsatisfactorysolutions. vi The closure issues ofthe K-e two-equation turbulence model are discussed. Specifically, theoriginalandnon-equilibriumK-emodelsarecompared.Itisobservedthat theequilibriumconditionbetweenproduction anddissipationoftheturbulentkinetic energy, whichisthebasisoftheoriginalK-emodel,isnotsatisfiedingeneral.The non-equilibriumK-emodel,wherethe£-equationismodifiedtoaccountfortheimbalance betweentheproductionanddissipationterms,inessenceintroducesanextratimescalein themodel,andappearstoproducebetterpredictionsforcomplexflows. TheK-eturbulencemodelwithrotationaleffectisalsoinvestigated.Theanalysis showsthatinthecontextoftheK-and£-equations, therotationaffects theturbulent quantitiesonlyindirectlythroughtheReynolds-stressterms.Thisindirectrotationaleffect isnotaccountedfor,intheoriginalK-emodel.Theanalysisalsoclearlyidentifiestheeffect of the system rotation interacting with structure of turbulence and the primary nondimensionalparameter.Therotationaleffectismodeledthroughthemodificationofthe sourceterminthe£-equation.Thenumericalandmodelingtechniquesareusedtosolvetwo- andthree-dimensionalturbomachineryflowproblems. vii CHAPTER 1 INTRODUCTION With the rapid advance of numerical methods and computer technologies, computationalfluiddynamics(CFD)isbecominganimportanttoolinanalyzingfluid physicsandinengineeringdesign.However,formanyflowproblemsinvolvingcomplex physicsandgeometries,suchasturbomachineryflows,gridgenerationbecomesamajor issue.Basicallytwodifferentapproacheshavebeendeveloped:(1)unstructuredgrid,and (2)multi-blockstructuredgrid.Eachoftwomethodshasitsadvantagesanddisadvantages. Withunstructuredgrids,theflowdomainistypicallydiscretizedwithanarrayofgrid cellswhichhaveanirregularconnectivity.Usuallythegridiscomposedofasinglecelltype, typicallyeithertriangularorquadrilateral(intwodimensions)andtetrahedral(inthree dimensions).Unstructuredgridsareveryflexibleindiscretizingcomplexgeometries.With thedevelopmentofcomputationalgeometryanddatastructure,discretizationofeventhe mostcomplexgeometriescanbehandledinanefficientway(LohnerandParikh 1988, Morganetal. 1991,Braatenand Connell 1996, Kallinderiset al. 1996). In addition, unstructured grids are well suited for solution adaptive methods involving local grid refinementwithoutintroducinggriddiscontinuity.However,unstructuredgridshavesome disadvantages.Intermsofcomputermemoryandcomputationalefficiency,duetothelack ofinherentorderofgridnodes,theflowsolverswithunstructuredgridsmayoccupymore computermemorycomparedtothesolverswithstructuredgrids.Thesameproblemalso makesitdifficultfortheflowsolvertobeefficientlyparalleledtoenhancethecomputational efficiency.Regardingsolutionaccuracy,unstructuredgridmethodsposeanotherchallenge forflowproblemscontainingthinlayers,suchasboundarylayers.Theabilitytoaccurately controltheaspectratioanddirectionalityofthegridcells,withoutincreasingtoomanygrid 1 2 cells,needtoberesolvedbeforeunstructuredgridscanbeefficientlyusedtosolvepractical viscousflowproblems. Ontheotherhand,structuredgrids,whichhavetheusualorderingofthegridcells, generallyrequirelesscomputermemoryandcanemploylinearequationsolverefficiently. Structuredgridscanalsobetteraccommodatedirectionalpreferencesuchasthinlayers.For complexflows,itisoftendifficulttogenerateasatisfactory,singlestructuredgridtocover theentire flow domain. In addition, forproblems ofmultiple length scales, a single structuredgridhasdifficultiestoresolveallflowfeatureswithareasonablenumberofgrid points.Allthesemakethemulti-blockstructuredgridveryattractive.Themulti-block structuredgridcanalleviatethosedifficultiesbecause(1)itcanreducethetopological complexity ofa single structured grid system by employing several blocks ofgrid, permittingeachindividualgridblocktobegeneratedindependentlysothatbothgeometry andresolutionintheboundaryregioncanbetreatedmoresatisfactorily;(2)gridlinesneed not to be continuous across grid interfaces, and local grid refinement and adaptive redistributioncanbeconductedmoreeasilytoaccommodatedifferentphysicallengthscales presentindifferentregions(Rai1984,ChesshireandHenshaw1990);(3)themulti-block method, in the spirit of divide-conquer, also provides a natural route for parallel computations(GroppandKeyes1992a,1992b). Inthemulti-blockmethod,becausethegridlinesmaynotbecontinuousacrossgrid blockinterfaces,informationbetweenblockshastobetransferredwithduecare.Suchan informationtransfermethodispreferablyeasytoimplement,whilemaintainingnecessary accuracy and computational efficiency. A majorrelated issue is that, formany flow problems,itisoftenimportanttouseconservativeinterfaceproceduretoensurethatphysical conservationlawsaresatisfied(Berger1987,Kallinderis1992,ChesshireandHenshaw. 1994). Suchaconsiderationcanimposestringentconstraintsontheconstructionofan effectiveinterfacescheme;furthermore,insomecases,theaboveneedscanconflictone another.Simultaneousachievementofbothconservationandaccuracycanbedifficult. 3 Inthepresentstudy,amethodologyforsolvingincompressibleviscousflowswith multi-blockstructuredgridintheframeworkofapressure-basedmethodisexplored.In Chapter 2, a pressure-based method for solving two-dimensional incompressible Navier-Stokesequationsinnon-orthogonalcurvilineargridissummarized. Theissuesof theinterfacetreatmentinthemulti-blockmethodareinvestigatedinChapter3.Specifically, theeffects ofnon-conservativeandconservativetreatments formassfluxonsolution accuracyarestudied.Differentwaystocouplepressurefieldsbetweenadjacentblocksand differentiterativestrategiesbetweenblocksarediscussed.InChapter4,datastructures associatedwithgridinterfacetreatmentaredetailed.Assessmentsaremadeoftheaccuracy andeffectivenessoftheseinterfaceschemes.Theapplicationsofthemulti-blockmethodare demonstratedthroughtheturbulentflowsaroundhydraulicturbinedistributorsinvolving cascadesofmultipleairfoils.ThesenumericalresultsarepresentedinChapter5. Besidesnumericaldiscretizationschemesandcomplexgeometries,thetreatmentof turbulentflowsisanotherissueofmuchpracticalimportancetothesuccessofCFD.Over thelastseveraldecades,variousturbulentmodelshavebeendevelopedandappliedtomany flowproblemswithvarieddegreesofsuccess.Thesemodelsrangefromthesimplestand leastexpensivealgebraicmodelstotheseven-equationReynolds-stressmodels,which include six equations for the Reynolds-stress components and one equation for the dissipationrateoftheturbulencekineticenergy.Amongthem,thetwo-equationmodelshave been most popular in complex engineering flow computations. The most popular two-equationmodelsistheK-emodel(LaunderandSpalding1974). However,thetwo-equationmodelsarederivedbasedoncertainassumptionsunder some specific flowconditions. One ofthemis assumingthattheproduction andthe dissipationrateoftheturbulentkineticenergyisunderequilibriumcondition.Whilethisis satisfactory for some simple flows, for complex flows including flow recirculation, streamlinecurvature,adversepressuregradient,etc.,theequilibriumconditiondoesnot exist,andtheoriginaltwo-equationmodelscannotgivesatisfactoryresults(ChenandKim,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.