ebook img

MTH 581-582 Introduction to Abstract Algebra PDF

276 Pages·2010·2.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MTH 581-582 Introduction to Abstract Algebra

MTH 581-582 Introduction to Abstract Algebra D. S. Malik Creighton University John N. Mordeson Creighton University M.K. Sen Calcutta University COPYRIGHT c 2007 ° Department of Mathematics c2007byD.S.Malik. Allrightsreserved. Nopartofthisbookmaybereproduced,storedinaretrievalsystem, ° or transcribed, in any form or by any means–electronic, mechanical, photocopying, recording, or otherwise– withoutthepriorwrittenpermissionoftheauthors. Thesoftwaredescribedinthisdocumentisfurnishedunder alicenseagreementandmaybeusedorcopiedonlyinaccordancewiththetermsoftheagreement. Itisagainst the law to copy the software on any medium except as specifically allowed in the agreement. Printed in the United States of America This document was produced with Scientific Word. iii iv Preface This book is intended for a one-year introductory course in abstract algebra with some topics of an advanced level. Its design is such that the book can also be used for a one-semester course. The book contains more material than normally would be taught in a one-year course. This should give the teacher flexibility with respect to the selection of the content and the level at which the book is to be used. We give a rigorous treatment of the fundamentals of abstract algebra with numerous examples to illustrate the concepts. It usually takes students some time to become comfortable with the seeming abstractness of modern algebra. Hence we begin at a leisurelypace paying great attention to the clarity of our proofs. The only real prerequisite for the course is the appropriate mathematical maturity of the students. Although the material found in calculus is independent of that of abstract algebra, a year of calculusistypicallygivenasaprerequisite. Sincemanyoftheexamplesinalgebracomesfrommatrices, we assume that the reader has some basic knowledge of matrix theory. The book should prepare the student for higher level mathematics courses and computer science courses. We have many problems of varying difficulty appearing after each section. We occasionally leave as an exercise the verification of a certain point in a proof. However, we do not rely on exercises to introduce concepts which will be needed later on in the text. A distinguishing feature of the book is the Worked-Out Exercises which appear after every section. These Worked-Out Exercises provide not only techniques of problem solving, but also supply additional information to enhance the level of knowledge of the reader. The reader should study the Worked- Out Exercises that are marked with along with the chapter. Those not marked with may be ♦ ♦ skippedduringthefirstreading. Sprinkledthroughoutthebookarecommentsdealingwiththehistorical development of abstract algebra. We welcome any comments concerning the text. The comments may be forwarded to the following e-mail addresses: [email protected] or [email protected] D.S. Malik J. N. Mordeson M.K. Sen v vi PREFACE Contents Preface v List of Symbols ix 1 Sets, Relations, and Integers 3 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Binary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 Introduction to Groups 35 2.1 Elementary Properties of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Permutation Groups 59 3.1 Permutation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Subgroups and Normal Subgroups 71 4.1 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Cyclic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 Lagrange’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Normal Subgroups and Quotient Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Homomorphisms and Isomorphisms of Groups 97 5.1 Homomorphisms of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Isomorphism and Correspondence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3 The Groups D and Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4 8 6 Direct Product of Groups 123 6.1 External and Internal Direct Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7 Introduction to Rings 129 7.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.2 Some Important Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8 Subrings, Ideals, and Homomorphisms 145 8.1 Subrings and Subfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.2 Ideals and Quotient Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.3 Homomorphisms and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9 Ring Embeddings 165 9.1 Embedding of Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 vii viii CONTENTS 10 Direct Sum of Rings 171 10.1 Complete Direct Sum and Direct Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 11 Polynomial Rings 177 11.1 Polynomial Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 12 Euclidean Domains 185 12.1 Euclidean Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 12.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 12.3 Prime and Irreducible Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 13 Unique Factorization Domains 199 13.1 Unique Factorization Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 13.2 Factorization of Polynomials over a UFD . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 13.3 Irreducibility of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 14 Maximal, Prime, and Primary Ideals 213 14.1 Maximal, Prime, and Primary Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 15 Modules and Vector Spaces 221 15.1 Modules and Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 16 Field Extensions 229 16.1 Algebraic Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 16.2 Splitting Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 16.3 Algebraically Closed Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 17 Multiplicity of Roots 247 17.1 Multiplicity of Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 18 Finite Fields 257 18.1 Finite Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 References 261 List of Symbols belongs to ∈ / does not belong to ∈ subset ⊆ proper subset ⊂ contains ⊇ properly contains ⊃ ∆ symmetric difference A B set difference \ (a,b) ordered pair A complement of a set A 0 N set of positive integers Z set of integers Z# set of nonnegative integers Q set of rational numbers Q+ set of positive rational numbers Q set of nonzero rational numbers ∗ R set of real numbers R+ set of positive real numbers R set of nonzero real numbers ∗ C set of complex numbers C set of nonzero complex numbers ∗ (S) power set of the set S P union of sets ∪ intersection of sets ∩n number of combinations of n objects i taken i at a time (cid:3) (cid:4) n! n factorial ab a divides b | a/b a does not divide b | gcd(a,b) greatest common divisor of a and b lcm(a,b) least common multiple of a and b n a a +a + +a i=1 i 1 2 ··· n a sum of all elements of S (cid:83)a∈S congruence modulo n n ≡(cid:83) f :A B f is a function from a set Ainto a set B → f(x) image of xunder f (f) domain of f D (f) image of f I g f composition of mappings g and f f◦1 inverse of a mapping f − I I = 1,2,...,n n n { } f(A) f(A)= f(a) a A , Ais a set { | ∈ } contained in the domain of the function f f 1(B) f 1(B)= x X f(x) B , − − { ∈ | ∈ } where f :X Y and B Y → ⊆ composition ◦ Π product ix x LIST OF SYMBOLS M (R) set of all n n matrices over R n × X number of elements in a set X | | G order of the group G | | (a) order of an element a ◦ Z set of integers modulo n n Z(G) center of the group G G/H quotient group aH,Ha left, right coset of a in H aHa 1 aHa 1 = aha 1 h H − − − { | ∈ } [G:H] index of the subgroup H in G K Klein 4-group 4 S symmetric group on n symbols n A alternating group on n symbols n D dihedral group of degree n n S the subgroup generated by S h i a the subgroup generated by a h i direct sum ⊕ N(H) Normalizer of H C(a) centralizer of a Ker f kernel of f isomorphism ' Aut(G) set of all automorphisms of the group G Inn(G) set of all inner automorphisms of the group G G stabilizer of a or isotropy group of a a Cl(a) conjugacy class of a G commutator subgroup of the group G 0 G[n] set of all x G with nx=0,G is a group ∈ nG nG= nx x G { | ∈ } C(R) center of the ring R Q real quaternions R Z[√n] Z[√n]= a+b√n a,b Z ,n is a { | ∈ } fixed positive integer Z[i] Z[i]= a+bi a,b Z { | ∈ } Z[i√n] Z[i√n]= a+bi√n a,b Z , nis a { | ∈ } fixed positive integer Q[√n] Q[√n]= a+b√n a,b Q , n is a { | ∈ } fixed positive integer Q[i] Q[i]= a+bi a,b Q { | ∈ } Q[i√n] Q[i√n]= a+bi√n a,b Q , n is a { | ∈ } fixed positive integer a the left ideal generated by a h il a the right ideal generated by a h ir a the ideal generated by a h i R/I quotient ring Q(R) quotient field of the ring R R[x] polynomial ring in x degf(x) degree of the polynomial f(x) R[x ,x ,...,x ] polynomial ring in n indeterminates 1 2 n √I radical of an ideal I radR Jacobson radical of a ring R F/K field extension K(C) smallest subfield containing the subfield K and the subset C of a field [F :K] degree of the field F over the field K GF(n) Galois field of n elements G(F/K) Galois group of the field F over the field K F fixed field of the group G G Φ (x) nth cyclotomic polynomial n P plane of the field F F

Description:
Preface This book is intended for a one-year introductory course in abstract algebra with some topics of an advanced level. Its design is such that the book can also
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.