ebook img

Moving Beyond Market Research: Demystifying Smartphone User Behavior in India PDF

27 Pages·2017·3.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Moving Beyond Market Research: Demystifying Smartphone User Behavior in India

Moving Beyond Market Research: Demystifying Smartphone User 82 Behavior in India AKHILMATHUR,NokiaBellLabs LAKSHMIMANASAKALANADHABHATTA,ShivNadarUniversity RAHULMAJETHIA,ShivNadarUniversity FAHIMKAWSAR,NokiaBellLabs Large-scalemobiledatastudiescanrevealvaluableinsightsintouserbehavior,whichinturncanassistsystemdesignersto createbetteruserexperiences.Afteracarefulreviewofexistingmobiledataliterature,wefoundthattherehavebeennolarge- scalestudiestounderstandsmartphoneusagebehaviorinIndia–thesecond-largestandfastestgrowingsmartphonemarket intheworld.WiththegoalofunderstandingvariousfacetsofsmartphoneusageinIndia,weconductedamixed-method longitudinaldatacollectionstudythroughanAndroidappreleasedonGooglePlay.Ourappwasinstalledby215users,and logged11.9milliondatapointsfromthemoveraperiodof8months.Weanalyzedthisrichdatasetalongthelinesoffour broadfacetsofsmartphonebehavior–howusersusedifferentapps,interactwithnotifications,reacttodifferentcontexts, andchargetheirsmartphones–topaintaholisticpictureofsmartphoneusagebehaviorofIndianusers.Thisquantitative analysiswascomplementedbyasurveywith55usersandsemi-structuredinterviewswith26userstodeeplyunderstand theirsmartphoneusagebehavior.Whileourfirst-of-its-kindstudyuncoveredmanyinterestingfactsaboutIndiansmartphone users,wealsofoundstrikingdifferencesinusagebehaviorcomparedtopaststudiesinothergeographicalcontexts. We observedthatIndianusersspendsignificanttimewiththeirsmartphonesaftermidnight,continuouslychecknotifications withoutattendingtothemandareextremelyconsciousabouttheirsmartphones’battery.Perhapsthemostdramaticfinding isthenatureofmobileconsumerismofIndianusersasshownbyourresults.Takentogether,theseandtherestofourfindings demonstratetheuniquecharacteristicsthatareshapingthesmartphoneusagebehaviorofIndianusers. CCSConcepts:•Human-centeredcomputing→Empiricalstudiesinubiquitousandmobilecomputing; GeneralTerms:UserStudy,UsageBehavior,India,SmartphoneUsage AdditionalKeyWordsandPhrases: SmartphoneUsagePatterns, UserBehavior, India, Notifications, BatteryCharging, ContextualUsage ACMReferenceformat: AkhilMathur,LakshmiManasaKalanadhabhatta,RahulMajethia,andFahimKawsar.2017.MovingBeyondMarketResearch: Demystifying Smartphone User Behavior in India. PACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3, Article 82 (September2017),27pages. DOI:10.1145/3130947 1 INTRODUCTION Mobilephoneshavetransformedfrombasiccommunicationtoolsintopowerfulinformation,communication, sensingandentertainmentdevices.Itisprojectedthatbytheyear2020,5.4billionpeopleintheworldwillhave Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthat copiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage. Copyrightsforcomponentsofthisworkownedbyothersthantheauthor(s)mustbehonored.Abstractingwithcreditispermitted.Tocopy otherwise,orrepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.Requestpermissionsfrom [email protected]. ©2017Copyrightheldbytheowner/author(s).PublicationrightslicensedtoACM. 2474-9567/2017/9-ART82$15 DOI:10.1145/3130947 PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017. 82:2 • AkhilMathur,LakshmiManasaKalanadhabhatta,RahulMajethia,andFahimKawsar amobilephone–morethanthoseprojectedtohaveelectricity(5.3billion),runningwater(3.5billion)orcars (2.8billion)[2].Thisrapidgrowthinsmartphoneownership,coupledwiththeemergenceofappdistribution channelssuchasGooglePlayandApple’sAppStore,hasmadeitpossibleforappdeveloperstoreachmillionsof usersaroundtheworldwithvaryinggeographical,social,economicandculturalbackgrounds. Tostudysmartphoneusagepatternsamongusers,ubicompresearchershavealsoleveragedthesameapp distributionchannelsandconductedvariouslargescale,in-the-wildstudieswithrealsmartphoneusers.Falakiet al.[13]conductedacomprehensivestudyofsmartphoneusagetocharacterizetheimpactofuserinteractionswith thedeviceonnetworkandenergyconsumption.Ferreiraetal.[15]analyzedthecontextualnatureofapplication micro-usage,andfoundthatsocialapplicationsaretheprimarytriggersforuser-initiatedmicro-usagesessions. Otherworkshavestudiednotificationdeliveryonsmartphones[29,31,37],mobileenergyconsumption[22], andpredictionofnextappuse[39]. Despitetheincreasedresearchactivityinthisspace,weobservethattherehavebeennomobiledatastudies aimedatunderstandinguserbehaviorinoneofthemajorsmartphonemarketsintheworld,namelyIndia.Most oftheexistingmobiledatastudies(e.g., [13,32])wereconductedwithusersinWesterncountriesandthustheir findingsmaynotreflecttheuserbehaviorinIndia. Akeyreasonforthismajorgapinmobiledataliterature isthatthesmartphonemarketinIndiahasonlymaturedinthelastfewyears.Priortothat,themobilephone marketwasdominatedbylow-endfeaturephoneswhichhaddulypromptedanumberofHCIstudies[16,25] ondesigningtechnologysolutionsforresource-constraineddevices.Onlyinthelastfewyearshastherebeen massivesmartphoneadoptioninIndia,makingitcurrentlythesecondlargestsmartphonemarketandthecountry withthehighestAndroiddeviceusagetimeintheworld[5].Thissuggeststhatsmartphoneshaveindeedbecome ubiquitousinIndia,anditisanopportunetimetostudyhowusersinIndiaareinteractingwiththeirsmartphones. In addition to the large user base, there is another reason that makes it interesting to study smartphone behaviorinanIndiancontext:ononehand,IndiahasalargeurbanEnglish-speakingpopulation,manyofwhom areemployedintheglobaltechnologyindustryandwhosesmartphoneusagepatternsmightoverlapwithglobal usagepatterns.However,therearealsomajordifferencesintermsofinfrastructureavailability(e.g.,electricity supply,internetspeeds)andeverydayculturalandsocialnorms,whichmightleadtouniquevariationsinuser behaviorinthiscontext.Assuch,wearguethatitiscriticalformobiledevelopersandubicompresearchersto obtainanin-depthunderstandingofhowusersinIndiainteractwiththeirsmartphones,soastodesignbetter mobilesystemsandexperiencesforthefastestgrowingsmartphonemarketintheworld. Inthispaper,wepresentamixed-methodlongitudinalstudywhichprovidesaholisticviewofthesmartphone usagebehaviorofIndianusers.Our8-monthstudywasconductedthroughanappreleasedonGooglePlay.A totalof215AndroidsmartphoneusersfromIndiaparticipatedinthestudy,generatingnearly11.9milliondata pointsrelatedtosmartphoneusageandcontext.Thisquantitativedataloggingwasfollowedbyanonlinesurvey of55usersandin-depthinterviewsof26usersfromtheoriginaluserpooltofurtherunderstandtheirmobile usagebehavior.AsthisisthefirsteverlongitudinalubicompstudyinanIndiancontext,ourgoalinthispaperis topaintabroadpictureofthesmartphoneusagebehaviorofIndianusersratherthanunderstandingaparticular micro-behavioralpatternaboutthisgroup.Tothisend,ourdataanalysisfollowsahighlyexploratoryapproach, whereinweanalyzethecollectedsmartphoneusagedatathroughfourbroadlensesthatarehighlyrelevantfor theubicompcommunity: • ApplicationUsageAnalysis: AccordingtothemarketresearchfirmAppAnnie[1],Indianusersrecorded thehighestnumberofAndroidappdownloads(6.2billionapps)intheworldin2016. Weexplorethe temporalvariationsinappusageofthisusergroup,uncoverthemotivationsbehindinstallation,usage anduninstallationofcertainapps,andanalyzetherelationshipbetweenusageofvariousappcategories. • NotificationAnalysis: Inthemodernsmartphoneusageparadigm,notificationsservetheverycrucialrole ofpromotingcontentawarenessbyalertinguserstonewlyavailableinformation.Therefore,weanalyze PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017. MovingBeyondMarketResearch:DemystifyingSmartphoneUserBehaviorinIndia • 82:3 thereceptivityofIndianuserstowardsmobilenotifications,andexploreifnotificationdeliverycontext hasanyimpactonitsreceptivity. • ContextAnalysis: Asoundunderstandingofuserbehaviorindifferentcontextscanhelppractitionersin designingadaptableubicompsystems.Assuch,weexploretheroleofpersonalcontext,devicecontext, andsocio-economiccontextinshapingthesmartphoneusageofIndianusers. • ChargingBehaviorAnalysis: Human-batteryinteractionhasbeenanimportantresearchtopicinubicomp research. By accurately understanding the battery charging preferences of users, mobile apps can intelligentlyscheduletheirenergy-heavyoperations.Inthisvein,weanalyzethedurationandtemporal distributionofchargingsessionsforIndianusers,aswellastheimpactofbatterylevelsonusers’decision tochargetheirphones. WhileuncoveringthesmartphoneusagepatternsofusersinIndiaistheprimarygoalofthispaper,ourwork alsobuildsupontherecentmobiledataresearchinthecommunity.Inarecentcritiqueonmobiledatastudies, Churchetal.[8]arguedthatubicompandHCIresearchcommunitiesshouldencourage“reproducingofmobile datastudiesindifferentpartsoftheworld,withdifferentuserpopulationsandatdifferentpointsintime”asthis willenableustocombineandcontrastthefindingsfromvariouscontextsandgeographies,andbuildabetter andmorecompleteunderstandingofuserbehavior.Wefundamentallyagreewiththispositionandtherefore,in thispaper,inadditiontothoroughlyanalyzingthesmartphonebehaviorforusersinIndia,wealsocontrastit againstpublishedmobiledatastudieswhichwereconductedinothergeographicalsettings.Morespecifically,we highlightthesimilaritiesanddifferencesinuserbehavioracrossgeographies,andshowthatifthesenuances arenottakenintoaccountwhiledesigningdata-drivenmobilesystems,theperformanceofthesesystemscould significantlydegradein-the-wild. Someofourmostinterestingfindingsare:a)usersinIndiaareextremelyconsciousabouttheirsmartphone’s batterylevel–smartphonesarechargedveryfrequentlyinordertomaintainahighbatterylevel,andnearly50% ofthechargingsessionshappenwithin80minutesofthelastsession,b)whileusersareremarkablyquickto glanceatincomingnotificationsontheirdevices,theattendancerateofnotificationsremainsverylow,c)the temporalpatternsofappusageamongIndianusersareinstarkcontrastwiththefindingsofpriormobiledata studiesinWesterncontexts,andfinallyd)wefoundevidenceinourdatathatthe‘app-only’businessmodel pitchedbye-commerceprovidersinIndiagoesagainstthebehavioralpatternsoftheusers. Insummary,thispapermakesthefollowingcontributionstomobiledataliterature: • WepresentthefirsteverlongitudinaldatacollectionstudyanalyzingsmartphoneusagepatternsinIndia, fromtheperspectiveoffourkeyfacetsofsmartphoneusage. • OurfindingsthrowlightonseveralpreviouslyunknownaspectsofsmartphoneuserbehaviorinIndia, andofferaholisticunderstandingofthefastestgrowingsmartphonemarketintheworld. • Wepresentadetailedanalysisofthevariationsinsmartphoneusagepatternsacrossmultiplegeographical regions,anddiscussitsimplicationsfortheubicompcommunity. 2 RELATEDWORK Large-scaleMobileDataStudiesandtheirImplications. Inrecentyears,manymobiledatastudieshave beenconductedtoassesssmartphoneusagepatternsofvarioususergroups.Bohmeretal.studiedtheapplication life-cyclesonAndroidsmartphonesof4,125users,mainlyacrossEuropeandtheUS,overa5-monthperiod[7]. Oneoftheirkeyobservationswasthesurprisinglyshortdurationofappusagesessions. Ferreiraetal.[15] built upon their work and found that 41.5% of all application sessions lasted less than 15 seconds. Falaki et al.[13]evaluatedtheimpactofuserinteractionswiththedeviceonnetworkandenergyconsumption.Asimilar 9-month-longstudybyDoetal.[12],involving77Europeanparticipants,bringsoutlocality-basedapplication usagepatterns.Theyfoundthatuserstendtousemoresynchronouscommunicationmodes(suchasvoicecalls) PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017. 82:4 • AkhilMathur,LakshmiManasaKalanadhabhatta,RahulMajethia,andFahimKawsar overothersinunknownornon-stationarylocations. Comparablecontextualresultshavealsobeenobserved byRahmatiandZhongamong15-to18-year-oldsfrombelowaverageincomehouseholdsinHouston,USA [35].Theyfoundthatparticipantsalsotendtospendmoreoftheirtime-andrecordlongersessions-inareas withbetterWiFiconnectivity. TheinfluenceofWiFiconnectivityhasbeenfurtherdiscussedbyBaumannet al.[6],whoseresultsshowthattheprobabilityofusersgeneratingdatatrafficonaWiFinetworkistwicethat onacellularconnection.Theimplicationsofsuchresultsisenormous,andhastherebyledtothedevelopment ofcomprehensivemodelsofuserbehaviorthatcanbeutilizedinordertoimproveusabilityandefficiencyof smartphones.AnexemplificationofthesameistheMarkovstatetransitionmodelofsmartphonescreenusethat hasbeendevelopedbyKostakosetal.asdescribedin [20]. BehaviorAnalysisonSmartphones. Studiesonsmallerscalehavealsobroughtupotherdetailsofbehavioral patternsofsmartphoneusers.Forinstance,Jonesetal.[18]exploreapp“revisitationpatterns”usinganapplication deployedonGooglePlay.Bystudyingtherevisitationcurvesshowinghowfrequentlyusersreturnedtoanapp, theywereabletoconfirmseveralintuitivestructuresofusage.VanBerkeletal.[42]discoveredandreported flawswiththeprevailingapproachofapproximatingsessions,findingthatwhenuserslockandunlocktheir smartphoneswithinashortduration(e.g.,lessthanaminute),theyaremorelikelytobeestablishinganewsession thancontinuingthepreviousone.Thiscounterintuitiveobservationcalledforfurtherresearchonsmartphone sessionapproximations,perhapsalongthelinesofthecomprehensivequantificationofsmartwatchsessions presentedbyVisurietal.in[43]. Notificationpreferencesofsmartphoneusershavealsobeenexploredinsignificantdetail.Mehrotraetal.[27] designedsmarternotificationmechanismsbyconstructingassociationrulesusingcombinationsoftextinthe notification titles and the user’s contextual aspects of activity, location and time. Mehrotra et al. [28] also designed classifiers to learn the most opportune moment to deliver notifications to users, based on content, socialrelationships,andapplicationcontext.Additionally,asimilarbehavioranalysisstudyaimedatyouthina KoreanuniversitywasalsoconductedbyLeeetal.[21].Thisstudy,involving95studentsforaperiodof67days, soughttoidentifysmartphoneusagepatternsofboth“high/at-risk”and“non-risk”groupsofusers,whohad beenclassifiedbypre-trialsurveys.Sensordatafromsmartphonesisalsobeingutilizedbyresearcherstostudy thebehaviorofusers.Tsapelietal.[41]detectthecausaleffectsofseveralfactorssuchasworking,exercising andsocializingonthestresslevelsof48students. Thedependencyofuserbehavioronthecontextoftheuserhasalsobeenexploredinpriorresearch. The collectionofqualitycontextualdatahasitselfbeenanopenchallenge.Liuetal.[23]foundthattheperceived needfordonationandtheperceivedorganizationreputationactasmainmotivatorstoencourageuserstodonate contextualdataforstudies.Numerousaspectsofcontextualdependencehavebeeninvestigatedinpaststudies. Forinstance,Karikoskietal.[19]studiedthecommunicationpatternsofusersbasedonparameterssuchastheir location,mobilenetworkcellID,WLANdataetc.todeterminetheirpreferenceforlengthofvoicecalls,intensity ofusageofemail/SMS,IMorVoIPservicesetc.Liuetal.[24]questioned267usersinChinatobuildanadoption modelofmobilegamingwhichindicatedthatcontextwasthebiggestinfluencerandpredictorofmobilegame adoption.Theresultsoftheabove-mentionedworksreiteratetheneedtoexaminethecontextualfactorsdriving userpractices. Anotherfacetofuserbehaviorthatmeritsin-depthdiscussionisthatofbatteryusage.Ferreiraetal.in [14] investigatechargingandbatteryusagepatternsofover4,000usersover4weeks. Thestudyhighlightedthe energywastagecausedbyusersnotunpluggingtheirphonesassoonasthechargingcyclecompleted.Moreover, itassertsthevaluethatusersassociatewiththebatterylifeoftheirdevices,whichisreiteratedbytheresults ofourindependentsurvey. Hosioetal.[17]haveattemptedtosystematicallymeasurethemonetaryvalueof smartphonebatterylifeandhavefoundthepricesofthefirstandlast10%batterysegmentstodiffersubstantially. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017. MovingBeyondMarketResearch:DemystifyingSmartphoneUserBehaviorinIndia • 82:5 Table1. Facetsofsmartphoneusagestudiedinthepaper,alongwiththeassociatedresearchquestions Facetsof ResearchQuestionsAddressed SmartphoneUsage Howistheapplicationusagedistributedtemporally? Howlongandhowfrequentareapplicationusagesessions? ApplicationUsage Whatmotivatesthechoiceofapplicationsamongusers? HowdoestheusageofVoIP&IPmessagingappscomparewithtraditionaltelephonyapps? Whydousersuninstallapps? Howquicklydousersrespondtoanotification? Notifications Howeffectivearenotificationsinengagingtheuser? Howdoesalertmodalityimpactanotification’sresponsetime? Howdoestheuser’sphysicalactivitycontextaffectapplicationusage? Howaresmartphoneusagepatternsimpactedbytheuser’slocation? UserContext Cantypeofnetworkconnectivityhaveaneffectonsmartphoneusagepatterns? Howdoesthebroadersocio-economiccontextaffectsmartphoneusageofIndianusers? Howdoesbatterychargingbehaviorvarytemporally? ChargingBehavior Howlongandhowfrequentarethechargingsessions? SmartphoneUsageStudiesinIndia. Asdiscussedpreviously,smartphoneusageinIndiahasbeenreaching newheightsintherecentyears.Accordingtoa2016reportbybusinessintelligencefirmAppAnnie[1],Indian usersspentastaggering150billionhoursonsmartphones,arisefromaround100billionhoursin2015.Thereport alsopredictsfurthergrowthinIndia’ssmartphonepenetration.Anotherpointtobenotedfromthereportisthat IndialeadsmarketssuchasChina,SouthKorea,UKandtheUSintermsoftheaveragenumberofshoppingapps installedperuser–pointingtotheadaptivityofIndianstowardsmobilee-commerceaswellastheirtendencyof comparingserviceprovidersbeforemakingapurchase.ThisissupportedbyDeshmukhetal.[10],whodiscuss theshiftfrome-commercetom-commerceinIndia,andanalyzethesocialfactorsthatsupportthistransition. However,ourunderstandingofIndiansmartphoneusersisprimarilyrestrictedtomarketingreportsgenerated bybusinessanalystfirms. Usuallythegoalofsuchreportsistostudythemarketopportunitiesandprovide guidancetobusinesses,ratherthanlookingintothenuancesofuserbehaviorthatcouldbeofinteresttomobile researchersanddevelopers.Whiletherehavebeensmall-scalefocusedstudiesinthemedicalliteraturewhich havelookedataddictioninmobilephoneusageamongIndianusers[9,11],tothebestofourknowledge,no large-scalestudyhaseverbeendonetodevelopaholisticunderstandingofsmartphoneusagebehaviorinIndia. Inthiswork,ourgoalistogatherlarge-scalesmartphoneusagedatafromIndianusers,andsystematically understandthevariousfacetsofsmartphoneuse. Webuilduponpriormobiledataresearchworks,andalso highlightuniqueaspectsofsmartphoneusageamongourtargetusergroup. 3 STUDYDESCRIPTION Inthissection,weprovidedetailsofouruserstudytocollectlarge-scalesmartphoneusagedatafromusersin India.Webeginbyprovidingthestudyoverview,whichisfollowedbyadescriptionofourdatacollectionsystem, studymethodology,andparticipantdemographics.Finally,wegiveasummaryofthedatalogscollectedinour study,andouranalysisplanforthesubsequentsections. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017. 82:6 • AkhilMathur,LakshmiManasaKalanadhabhatta,RahulMajethia,andFahimKawsar 3.1 Overview Thedomainofsmartphonedataanalysisisclearlyverybroad,asisevidentfromtheextensiveanddiverseresearch inthisareaasdiscussedin§2. Inthispaper,wefocusouranalysisonfourbroadfacetsofsmartphoneusage thatareparticularlyrelevanttotheubicompcommunity.Thesefourfacetsalongwiththeresearchquestions exploredwithineachfacetaretabulatedinTable1andexplainedbelow: ApplicationUsageAnalysis:Mobileapplicationsareatthecoreofthesmartphoneecosystem–in2016,atotal of90billionappsweredownloadedfromGooglePlayandAppleAppStore[1].Whileanumberofmarketing surveyshavebeenconductedonthegrowthandpotentialoftheIndianapp‘market’,tothebestofourknowledge, therehasbeennolarge-scaleresearchstudyintheubicompandmobilesystemscommunitythatprovidesdetailed insightsintotheapplicationusagebehaviorofthisusergroup.Inparticular,weexplorethetemporalpatternsof appusage,distributionofappsessions,motivationsbehindinstallation,usageanduninstallationofcertainapps,and relationshipbetweentheusageofvariousappcategories. Notification Analysis: An in-depth understanding of the human-notification interaction can help mobile developersincreatingintelligentnotificationdeliverymechanismsthatleadtohigheruserengagement.Our workspecificallylooksatthereceptivityandeffectivenessofmobilenotificationsamongIndianusers, andthe impactofalertmodalityonanotification’sresponsetime. ContextAnalysis:Priorubicompstudieshaveshownthatsmartphoneusagehasastrongdependencyonthe user context [19]. An accurate inference of the user context, combined with a sound understanding of user behaviorinthatparticularcontext,canhelpubicomppractitionersdesignmobilesystemsthatcanbetteradapt touserneeds.Inthispaper,weprimarilylookatfourkindsofcontextsthatmayinfluencesmartphoneusage behavior,namelylocationcontext,physicalactivitycontext,connectivitycontext,andsocio-economiccontext. ChargingBehaviorAnalysis:Modernsmartphoneapplicationsrunsophisticatedmobilesensing,inference andnetworkconnectivityoperationswhichimposeamajorburdenonthesmartphonebattery,andmayrequire userstochargethephonebatteriesatregularintervals.Byunderstandingthebatterychargingpatternsofthe end-users,mobiledeveloperscanscheduletheirenergy-heavyoperationstoopportunemoments–forexample, whenthebatterylevelishighorwhenauserislikelytochargethephone.Tothisend,weanalyzetheduration andtemporaldistributionofchargingsessions,aswellastheimpactofbatterylevelsonusers’decisiontocharge theirphones. Whilethesefourfacetsofsmartphoneusagehavewitnessedactiveresearchintheubicompcommunity,itis importanttoacknowledgethattherecouldbeotherinterestingaspectsofsmartphoneusagesuchasinfluenceof thesocialnetworkonusage,datatrafficpatterns,OS-specificvariationsinusageetc.whichareoutofscopeof thispaper,andcanbeexploredinfuturework. 3.2 Methodology In this section, we present our data collection system and provide details on our study methodology and participants. DataCollectionSystem: OurdatacollectionexercisefocusedonusersofAndroidOS–currently,Android hasa97%smartphonemarketshareinIndia[5],makingitaclearchoiceforalarge-scaleubicompstudy.We developedanAndroidapplicationwhichrunsonAndroid5.0+anddistributedittousersviaGooglePlay.The appisimplementedtorunasabackgroundserviceontheuser’sdeviceandpassivelyrecordsallusagesessions onthedevicealongwithvariouscontextualinformation. Table 2 details the five types of data points collected by the app. We used event-based Android APIs to collectapplicationdata,screenevents,notificationeventsandcalldata.Specifically,wheneveranewdatapoint PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017. MovingBeyondMarketResearch:DemystifyingSmartphoneUserBehaviorinIndia • 82:7 Table2. Listofdatacollectedfromuser’sphones.(*User’sphysicalactivitywasobtainedbyqueryingtheAndroidActivity RecognitionAPIs) DataType Description Applicationdata Packagenamesofallappsinstalledonthephone,timestampsofapp open(anapp comingintoforeground)andapp close(anappgoingintobackground). Screenevents Timestampswhenthephonescreenisturnedon,offandunlocked. Notificationevents Timestampsofnotificationarrival,notificationaccessordismissal,nameofapplication whichsentthenotification.Thecontentinsidethenotificationwasnotcollectedfor privacyreasons. Callevents Timestamps of calls, call medium (cellular/VOIP), type of call (incom- ing/outgoing/missed). SensorandContext Batterylevel,celltowerID,WifiDetails(isConnected,BSSID),isHeadphoneConnected, proximitytothephone,ambientlightintensity,ambientsoundlevel,user’sphysical activity*. pertainingtothesecategoriesbecomesavailable(e.g.,anewnotificationisreceived),theAndroidOSfiresan eventwhichiscaughtbyourbackgroundserviceandtherequireddatapointsarelogged.Further,sensorand context data items listed in the last row of Table 2 were collected by polling Android APIs at i) the start of eachsmartphonesession(i.e.,wheneverthescreenwasturnedon),andii)onceevery2minutes.Theperiodic collectionofsensorandcontextdatawasdonetoensurethatdataiscollectedevenduringperiodsofinactivity. Alldatalogscollectedbytheapplicationarestoredlocallyonthephone,andareperiodicallyuploadedtoa remoteserver. SystemDeployment. WereleasedourdatacollectionapponGooglePlayStore,andsolicitedparticipation inthestudybypublicizingitonsocialforumsandemaillists. Morespecifically, weadvertisedthestudyin 6universitycampusesthroughemaillistsanduniversityforums,andin7industrialorganizations(primarily softwareandbusinessconsultingcompanies)throughemployeeforums.Thisresultedinatotalgeographical spreadofmorethan10urbancitiesand6statesinIndia.Inaddition,wealsoadvertisedthestudythroughpersonal socialnetworks,andparticipantswererecruitedthroughsnowballsampling. Whileparticipantrecruitment throughsocialforumsandemaillistsiswidelydoneinmobiledataliterature[32–34,42],thereisneverthelessa possibilityofsamplingbiasinthismethodofparticipantselection.Inourstudy,asparticipantrecruitmentwas doneacrossmultipleorganizationsinmorethan10urbancities,wearguethattheproblemofsamplingbiasis alleviatedtoalargeextent.However,wedonotclaimthatthesampleiscompletelyunbiasedandrepresentative foracountrywithapopulationof1.3billion.Thisisclearlyalimitationofourstudyandwithuserstudiesin general,andassuchwedulyacknowledgeitintheLimitationssectionin§6. Thedatacollectionforourstudywasdoneintwophases–thefirstphaseranfromDecember2015toJuly 2016andthesecondfromJanuary2017toFebruary2017.Thesecondphasewasprimarilymotivatedbyamajor socio-economicchangeinIndia–widelyreferredtoasDemonetization1–thattookplaceinNovember2016. WewantedtounderstandhowsmartphoneusageinIndiaadaptstochangesinbroadersocio-economiccontext (detailedin§4.3). 1TheIndiangovernmentannouncedonNovember8th,2016thatthetwohighest-valuecurrencynotesinthecountrywouldceasetobelegal tenderwithimmediateeffect.Oneoftheintendedgoalsofthisdecisionwastoencouragepeopletousedigitalpaymentmechanisms[3]. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017. 82:8 • AkhilMathur,LakshmiManasaKalanadhabhatta,RahulMajethia,andFahimKawsar ParticipantDemographics. Intotal,theapplicationwasinstalledby215users,whowereagedbetween18 to38years. 63ofthemidentifiedthemselvesasfemales. Forouranalysis, however, weonlyincludedusers contributingmorethanonemonthofdata.Thisfilteringstepresultedin160users(41females)agedbetween 18and38years. Whiletheagediversityinourparticipantgroupseemratherlow,itisactuallyinlinewith priorresearchbyPewResearchCenterwhichfoundthatonly9%ofthepopulationagedover35yearsownsa smartphoneinIndia[4]. 104outofthe160participantsidentifiedthemselvesasstudents,whiletheremainingwereworkingprofession- als.Exceptforthesebasicdemographics,wedidnotcollectanypersonalinformationfromtheusers.Duetothe inherentanonymityinourstudy,wedonotknowtheethnicitiesoftheparticipants,assuchourfindingsshould beinterpretedasapplicabletosmartphoneusersinanIndiancontextratherthanethnicIndianusers.Howeverfor brevity,werefertoourparticipantsasIndiansmartphoneusersinthepaper.Finally,asanincentiveforusingthe app,userswereenteredintoalottery(iftheyagreedtoprovidetheiremailaddress)andtwowinnerswereeach givenawearablefitnessband. QualitativeDataCollectionInordertocomplementourquantitativedataanalysiswithsubjectiveperceptions ofusers,weconductedanonlinesurveywiththeparticipantsfromourstudy. Atotalof55participants(10 females) completed the survey, which comprised of 30 questions revolving around the aforementioned four facetsofsmartphoneusageanalyzedinourstudy.Finally,weconductedaseriesofpost-studyinterviewswith 26 participants (10 females) from our quantitative study, aged between 18 to 30 years. The interviews were semi-structured,30minuteslong,andaimedatuncoveringthesubjectivereasonsbehindthequantitativefindings ofourstudy.Eachinterviewwasrecordedandlaterpartiallytranscribedtocompletetheobserver’snotes.No compensationwasprovidedtotheparticipants. 3.3 DataLogsandAnalysis Thecombineddatasetcollectedinourstudyconsistsof11.9milliondatapoints,outofwhichthereare1.7million applicationusageevents,433,900notifications,andmorethan6millionsensorandcontextdatapoints.Intotal, weobserved620,194smartphoneusagesessionsacrossallusers(µ =3875,σ =2100)withacombinedduration of55,619hours. Wedidnotobserveanysignificantdifferenceintheparticipantdemographics(age,gender, occupation)betweenthetwophasesofdatacollection.Assuch,wedecidedtocombinethedatasetsfromthe twophaseswhilepresentingourfindings,exceptforwhenwespecificallyanalyzetheeffectsofDemonetization onsmartphoneusage(detailedin§4.3).Theresultsofthesurveyandtheinterviewtogetherwiththequantitive dataweextractedfromthesystemlogsarepresentedinthesubsequentsections. 4 RESULTS Inthissection,wepresentadetailedanalysisoftherichdatasetcollectedinourstudy.Asdiscussedin§3.1,we explorefourbroadfacetsofsmartphoneusageinIndiathatarerelevantfortheubicompcommunity,namelya) ApplicationUsagePatterns,b)NotificationAttendanceBehavior,c)RelationshipbetweenContextandSmartphone Usage, andd)BatteryChargingBehavior. Ouranalysisofeachofthesebroadfacetsispresentedinseparate subsections,andisguidedbytheresearchquestionsoutlinedin§3.1andsummarizedinTable1.Ashighlighted earlier,inadditiontouncoveringthesmartphoneusagebehaviorofIndianusers,thispaperalsoaimstocontrast their behavior with prior mobile data studies conducted in different geographical regions. Therefore, after analyzingtheIndianuserdataacrossthefourfacets,wepresentacomparisonbetweenfindingsfromtheIndian contextvs.priormobiledataliteraturein§5. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017. MovingBeyondMarketResearch:DemystifyingSmartphoneUserBehaviorinIndia • 82:9 4.1 UnderstandingApplicationUsage Inthissection,westudytheapplicationusagebehaviorofusersinIndia. Ourapplicationlogsconsistofapp usageinformationfrom2931uniqueapps,whichwereusednearly1.7milliontimes,withatotalusageduration of51,800hours.Additionally,wecollectedsubjectivedataaboutappusagethroughasurveyandsemi-structured interviews.Thisrichdatasetprovidesauniqueopportunitytoanswerthefollowingresearchquestionsregarding the app usage of Indian users. We also contrast the usage behavior of Indian users with prior literature on appusagefromothergeographicalregions,andlaterin§6,weexplaintheimplicationsofthesegeographical variationsfortheubicompcommunity. • Howistheapplicationusagedistributedtemporally?:Weseektounderstandthetemporalvariationsin usageofapplicationsfromvariousappcategories–isappusageevenlydistributedthroughouttheday oraretherecertainpeakusagetimes? • Howlongandhowfrequentareapplicationusagesessions?:Weexploreifappusagehappensinburstsof shortandfrequentsessions,orareusersmoreinclinedtowardslessfrequentbutlongersessions? • Whatmotivatesthechoiceofapplicationsamongusers:Withthepresenceofbothaboominglocalstartup ecosystemandglobale-commerceandtransportcompanies,Indianusershavemultipleappstochoose fromtoavailanygivenservice. Weseektounderstandhowusersmanagethis‘dilemma’ofchoice– whatstrategiesdotheyadoptforchoosingaservice? • HowdoestheusageofVoIPandIPmessagingappscomparewithtraditionaltelephonyapps?:Weexplore userpreferenceswithregardstocommunicationapps–specifically,weaimtounderstandhowVoIPand IPmessagingappsco-existwithtraditionaltelephonyserviceslikeGSMcallsandSMS. • Whydousersuninstallapps?:Westudytheunderlyingsubjectivereasonsthatcauseuserstouninstall appsfromtheirphone.Thisinformationisparticularlyimportantforappdevelopers,whomaywantto adapttheirmobilesystemstomeetend-userexpectations. Howistheapplicationusagedistributedtemporally?InFigure1,weplotthetemporaldistributionofapp usagebycategory,i.e.,whenareappsfromvariouscategorieslaunched.Quitesurprisingly,weobservethatthe highestvolumeofappusagetakesplacebetween12am-4amformostoftheappcategories,whichaccountsfor roughly23.94%ofallappusage. Inparticular,appsinCommunication,Photography,Weather,andFoodand Drinkscategorieshavetheirpeakusageatthesetimes.Further,thehoursbetween8am-12amseetheleastapp usageinourdataset(2.62%).Thisobservationisremarkablydifferentfrompriorstudies(e.g.,[7]whichfound thatforAmericanusers,morninghoursbetween8am-12amcontributetoasignificantpercentageofappusage (16.17%). Wefurtherinvestigatedthecauseofthesedifferencesthroughoursurveyandinterviewsandfoundthatusers refrainfromusingtheirsmartphonesinthemorninghourswhichtendtobethestartinghoursofworkorschool. Moreover,amajorityoftheparticipants(n =19)mentionedthattheytypicallysleepwellaftermidnight,and spendasignificanttimeontheirphonesduringlatenighthours.Oneintervieweesaid, ”Ioftenstayuptill2amworking,afterwhichIscrollaimlesslythroughmysocialmediafeedswhile lyinginbed.” WesuspectthatthisbehaviorcouldbeduetotheagedemographicsofIndiansmartphoneusers[4](also reflectedinourparticipants)whichisskewedtowardsyoungerusers. Next,weanalyzetheco-occurrenceprobabilitiesofthetop20appcategorieswithinasmartphoneusagesession (i.e.,thetimefromscreenunlocktoscreenoff).Theco-occurrencematrixinFigure2isbestinterpretedrow-wise, witheachrowrepresentingtheprobabilityofacategoryonthex-axisco-occurringwiththerowcategoryonthey- axisinthesamesession.Moreformally,co-occurrenceprobabilityiscomputedasP(x,y) =count(x,y)/count(x) whereP istheco-occurrenceprobabilityofcategoriesx andy,andcount(x,y)representsthenumberofusage PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017. 82:10 • AkhilMathur,LakshmiManasaKalanadhabhatta,RahulMajethia,andFahimKawsar Fig.1. Category-wiseDiurnalSessionDistribution sessionswherebothx andycategoryappswerepresent.Forexample,whenaBrowserappisusedonthephone, thechancesofalsousingaCommunicationandaSocialappinthesamesessionare0.42and0.22respectively, and of using another Browser app (diagonal entry) is only 0.02. From Figure 2, we observe heavy usage of Communicationappsalongwithothercategories–forallappcategories, thereisnearly30%chancethata Communicationappwillbeusedinthesamesession.Userresponsessuggestthatthisisbecausetheytendto engageindiscussionswiththeirfriendsorcolleaguesabouttheiractivitiesonotherapplications.Forexample, oneoftherespondentsnoted, ”IusuallyuseWhatsApptosharescreenshotsofmysocialmediafeedwithmyfriendsifIcome acrosssomethinginteresting”. Participants(n =9)alsoreportedusingCommunicationappstogettheirfriends’opinionswhenpurchasing something,ortoreachaconsensuswhileorderingfoodormakingplansforagroupofpeople. Howlongandhowfrequentareapplicationusagesessions? InFigure3,weplottheCDFofappusage durationsforthetopapplicationcategoriesbyusage.Asexpected,appsundertheGamescategorytendtohave thelongestusagetime,withhalfoftheusagesessionslastingformorethan90seconds(meanduration=195 seconds).ThisisfollowedbyShopping(mean=101seconds)andSocialapps(mean=95seconds),whileEmail appshavethelowestmeansessiondurationof37seconds.WealsoobservethatMusicappshavesurprisingly lowsessiondurations(mean=38.1seconds),whichcanbeattributedtothefactthatMusicappsaremostlyused inthebackgroundandassuch,theirforegroundtimesarerathershort.Overall,thesessiondurationswerefound tobesignificantlylongerthanthoseofAmericanusersreportedbyChurchetal.in[8],whereover48%ofall applicationusageswerereportedtolast15secondsorless,andapproximately56%tolast22.5secondsorless. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.3,Article82.Publicationdate:September2017.

Description:
LAKSHMI MANASA KALANADHABHATTA, Shiv Nadar University. RAHUL observed that Indian users spend signi cant time with their smartphones a er midnight, continuously check noti cations without a 82:2 • Akhil Mathur, Lakshmi Manasa Kalanadhabha a, Rahul Majethia, and Fahim Kawsar.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.