ebook img

MotionCast for Mobile Wireless Networks PDF

108 Pages·2013·1.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MotionCast for Mobile Wireless Networks

SpringerBriefs in Electrical and Computer Engineering For furthervolumes: http://www.springer.com/series/10059 Xinbing Wang MotionCast for Mobile Wireless Networks 123 Xinbing Wang ShanghaiJiaoTong University Shanghai People’s Republic ofChina ISSN 2191-8112 ISSN 2191-8120 (electronic) ISBN 978-1-4614-5634-6 ISBN 978-1-4614-5635-3 (eBook) DOI 10.1007/978-1-4614-5635-3 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012955234 (cid:2)TheAuthor(s)2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Wireless ad hoc networks are useful when there is a lack of infrastructure for communication. Such a situation may arise in a variety of civilian and military contexts like sensor network applications and communication in harsh environ- ments. Since the seminal work by Gupta and Kumar [3], the study of wireless ad hoc networks has focused on understanding its fundamental capacity limits. The capacitypersource-destination(S-D)pairofrandomadhocnetworkdevelopedby p Gupta and Kumar is Hð1= ffinffiffiffilffioffiffigffiffiffiffinffiffiÞ,1 which is pessimistic because the capacity goesto0asthenumberofnodesinafixedarean!1.Sincethentherearethree kinds of works that focus on the study of capacity. OneofthetopicsistoextendtheoriginalworkdonebyGuptaandKumar.This kindofworkincludescompletingtheproofsonunicast[46],extendingthenumber ofreceiverstothecaseofmulticast[9,47,148],broadcast[48],andconvergecast [152, 153]. It also contains the extension of the unicast and the generalization of different kinds of transmission possibilities in the real networks such as user- centric networks [145]. However, the results are also pessimistic because the per- node capacity tends to 0 as the number of nodes n!1. Another topic is on the tradeoff between capacity and other network variables like delay and power consumption. In 2002 Grossglauser and Tse [2] found that mobility can increase the capacity. The per-node capacity can be bounded by a constantaccordingtothe2-hopschemeproposedin[2].However,theend-to-end 1 Thefollowingnotationsareusedthroughoutourbook. 1.fðnÞ¼OðgðnÞÞ,limsup fðnÞ\1, n!1 gðnÞ 2.fðnÞ¼XðgðnÞÞ,liminfn!1gfððnnÞÞ\1, 3.fðnÞ¼HðgðnÞÞ,fðnÞ¼OðgðnÞÞandgðnÞ¼OðfðnÞÞ, 4.fðnÞ¼oðgðnÞÞ,limn!1gfððnnÞÞ¼0, 5.fðnÞ¼xðgðnÞÞ,limn!1gfððnnÞÞ¼0. v vi Preface delay is very large when mobility is introduced. Following this work, there are a group of people working on the capacity-delay tradeoff [13, 18, 147, 149, 150, 160]. There is also another issue that needs consideration in the network: energy consumption[89].Sincewearequiteinterestedinthecapacity-delaytradeoff,we presentthisissueinSect.3.2.Duetolimitedtime,wewillnotconsiderothertypes of tradeoffs in our report. Thirdly, other works are related with changing the ad hoc network model. The classical model is so-called random homogeneous ad hoc networks. To have a change on this, some people studied arbitrary networks [50], some studied inho- mogeneousnetworks(clusters)[51–53,159],somecombinedthecellularnetwork and ad hoc network and worked on hybrid networks [54–56, 157], some used directional antenna to enhance the capacity performance [155], some let nodes cooperate and build a hierarchical MIMO network [114, 151], some studied the scaling law for cognitive radio networks (CRNs) [144, 146, 154, 156, 158], still others used network coding [57–61] and MPR [62, 63] to improve the network capacity. Connectivity is also a fundamental issue in wireless networks and has been extensively studied in recent years. Generally speaking, there are two types of definitionsonconnectivity.Oneisinthesenseofpercolation,i.e.,theexistenceof a component that consists of infinite connected nodes. The other is defined as the ability that each node in the network can find at least one path to any other node, eitherdirectlyorwiththehelpofseveralothernodesactingasrelays.Anetworkis said to have k-connectivity if there exist at least k mutually independent paths connecting each pair of nodes. According to [23], this definition is equal to the statementthatanetworkisk-connectedifandonlyifremoval ofanyk(cid:2)1nodes does not disconnect the graph. Based on the definitions on connectivity, the research works mainly fall into two categories. Some study connectivity from the percolation perspective. These works consider continuum percolation with the Poisson Boolean model. Let k be thenodedensity.Thenthereexistsacriticalvaluek forwhichpercolationoccurs. c If k[k (supercritical case), there will be a cluster consisting of infinite con- c nectednodesalmostsurely.Ifk\k (subcriticalcase),thenetworkhasnoinfinite c connected component and is separated into an infinite number offinite connected components. In the literature, the accurate value of the percolation threshold has not been decided yet, while [24, 25] demonstrate that the analytical upper and lower bounds for the threshold are 10.526 and 2.195, respectively. [26] provides simulation results to show that if connected nodes use cooperation techniques to furtherconnectisolatednodesthatcannotbeconnectedseparately,thepercolation threshold of the cooperative network is less than that of the non-cooperative network for 2-D extended network. [27] analytically obtains this result when the path loss exponent is less than 4. For the second type of definition on connectivity, extensive research investi- gates from various aspects the critical conditions to ensure (k-)connectivity. One concernistodeterminethecriticaltransmissionrange,aspresentedin[28,29,30]. In this context, all nodes in the network possess uniform transmission power. In Preface vii [28],byusingthetheoryofcontinuumpercolation,GuptaandKumarprovidethe critical transmission range for asymptotic connectivity 2-D dense network with n nodes independently and identically distributed in a disc of unit area. It is shown that if each single node has a transmission area pr2 ¼lognþcðnÞ, the network is n asymptoticallyconnectedwithprobabilityoneifandonlyifcðnÞ!þ1.Thenin [29],WanandYiofferapreciseasymptoticdistributionofthecriticaltransmission radius for k-connectivity. Another concern concentrates on the minimum number of neighbors [29, 31, 32].Eachnodeisassumedtohavetheabilitytoadjustitstransmissionpowersoas to maintain direct connections with a certain number of neighbors. In [31], Xue and Kumar point out that each node should be connected to HðlognÞ nearest neighbors to ensure the connectivity of the network with n uniformly and inde- pendentlyplacednodesinaunitsquare.[32]regardstheminimumnodedegreefor connectivity of a wireless multi-hop network. The rest of this book is summarized as follows. 1. In Chap. 1, we investigate the impact of base stations on the capacity of MotionCast. Here MotionCast means multicast between mobile nodes. The mobility pattern is assumed to be i.i.d. mobility. Three protocols are analyzed, i.e., 2-hop relay algorithm without redundancy, 2-hop relay algorithm with redundancy, and multihop relay algorithm. This network model combines multicast, mobility, and base stations together and thus brings significant enhancement to the capacity and delay tradeoff. 2. InChap. 2,weturntotheconnectivityissuesinclusterednetworks.Anewkind of connectivity, ðk;mÞ-connectivity, is defined. Its critical transmission range for i.i.d. and random walk mobility models are derived respectively. By the term of ðk;mÞ-connectivity, we mean that in each time period consisting of m timeslots,thereexistatleastktimeslots,duringanyoneofwhicheverycluster member can directly communicate with at least one cluster head. For random walkmobility,twoheterogeneousmodels,velocitymodelwithconstantnumber of values and velocity model with constant number of intervals, are proposed and studied. For random walk mobility with either of the two heterogeneous velocitymodelsandi.i.d.mobilitymodel,underweakparameterscondition,we provide bounds on the probability that the network is ðk;mÞ-connected and derive thecriticaltransmissionrangeforðk;mÞ-connectivity.Forrandomwalk mobilitywithvelocitymodelwithconstantnumberofvaluesandi.i.d.mobility model, under strong parameters condition, we present a precise asymptotic probability distribution of the probability that the network is ðk;mÞ-connected in terms of the transmission radius. 3. In Chap. 3, we conduct a survey on existing scaling law results on wireless networks. We will give you a global perspective about the researches on capacity in the past years. We set up a system model to analyze and compare the results for wireless networks. First, we introduce the network models and someimportantdefinitionswhichhavebeenwidelyusedinthepastresearches. Then we discuss the capacity-delay tradeoff problems in wireless networks. viii Preface After that, the capacity in random networks and arbitrary networks are illus- trated respectively. Furthermore, based on the capacity discussion, we give somepointsonthefactorsthatcanhaveagreatimpactoncapacity.Intheend, we come up with some popular techniques and show how they contribute to capacity respectively. Contents 1 MotionCast: Delay and Capacity Tradeoff Analysis. . . . . . . . . . . . 1 1.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Capacity and Delay in the 2-Hop Relay Algorithm Without Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Upper Bound of Capacity. . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Lower Bound of Delay. . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Capacity and Delay in the 2-Hop Relay Algorithm with Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Upper Bound of Capacity. . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Lower Bound of Delay. . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Capacity and Delay in the Multi-Hop Relay Algorithm with Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.1 When m = H(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.2 When m = o(n). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 From i.i.d. Mobility to Random Walk Mobility. . . . . . . . . . . . 14 1.5.1 Random Walk Mobility . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.2 Capacity and Delay in the 2-Hop Relay Algorithm Without Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.3 Capacity and Delay in the 2-Hop Relay Algorithm with Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Hybrid Random Walk Models. . . . . . . . . . . . . . . . . . . . . . . . 23 1.6.1 Capacity and Delay in the 2-Hop Relay Algorithm Without Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.6.2 Capacity and Delay in the 2-Hop Relay Algorithm with Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.7 The Impact of Node Density in the Network. . . . . . . . . . . . . . 26 1.7.1 Capacity and Delay in the 2-Hop Relay Algorithm Without Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . 26 ix x Contents 1.7.2 Capacity and Delay in the 2-Hop Relay Algorithm with Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.8 Random Way-Point Mobility. . . . . . . . . . . . . . . . . . . . . . . . . 29 1.8.1 Capacity and Delay in the 2-Hop Relay Algorithm Without Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.8.2 Capacity and Delay in the 2-Hop Relay Algorithm with Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.9 Applying Network Coding in 2-Hop Relay Algorithm with Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.9.1 Network Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.9.2 Upper Bound of Capacity. . . . . . . . . . . . . . . . . . . . . . 31 1.9.3 Lower Bound of Delay. . . . . . . . . . . . . . . . . . . . . . . . 31 1.10 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.11 Conclusion and Future Work. . . . . . . . . . . . . . . . . . . . . . . . . 33 2 MotionCast: General Connectivity in Clustered Wireless Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1 System Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.1 Network Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.2 Mobility Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.1.3 Definition of (K, M)-Connectivity. . . . . . . . . . . . . . . . 38 2.1.4 Definition of Critical Transmission Range . . . . . . . . . . 38 2.2 Main Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 The Disconnected Probability of a Cluster Member. . . . . . . . . 39 2.4 (K, M)-Connectivity Under Random Walk Mobility Model. . . . 42 2.4.1 Disconnected Probability of a Cluster Member Under Random Walk Mobility Model . . . . . . . . . . . . . . . . . . 42 2.4.2 The Critical Transmission Range Under Random Walk Mobility Model with Simple V-Model. . . . . . . . . 43 2.4.3 The Critical Transmission Range Under Random Walk Mobility Model with General V-Model . . . . . . . . 45 2.4.4 The Critical Transmission Range Under Random Walk Mobility Model with Homogeneous Velocity Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.5 (K, M)-Connectivity Under i.i.d. Mobility Model. . . . . . . . . . . 49 2.5.1 Necessary Condition of Theorem 13 . . . . . . . . . . . . . . 50 2.5.2 Sufficient Condition of Theorem 13. . . . . . . . . . . . . . . 50 2.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6.1 Explanation on the Expression of the Critical Transmission Range. . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6.2 Random Walk Mobility Model with Different Velocity Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Contents xi 3 MotionCast: A Survey on the Capacity Scaling of Wireless Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.1 Traffic Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.1.2 Network Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.3 Transmission Model. . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1.4 Capacity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.1.5 Definitions of Related Terms . . . . . . . . . . . . . . . . . . . 65 3.2 Capacity-Delay Tradeoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.1 End-to-End Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.2 Definitions of Related Terms . . . . . . . . . . . . . . . . . . . 67 3.2.3 Capacity-Delay Tradeoff in Static Wireless Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.4 Capacity-Delay Tradeoff in Mobile Wireless Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.5 Other Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Random Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3.1 Random Homogeneous Networks: Unicast, Multicast and Broadcast . . . . . . . . . . . . . . . . 70 3.3.2 Random Inhomogeneous Networks: Clusters. . . . . . . . . 72 3.3.3 Combination of Cellular System: Hybrid Networks . . . . 72 3.4 Arbitrary Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5 Factors that Influence Capacity . . . . . . . . . . . . . . . . . . . . . . . 74 3.5.1 Network Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.5.2 Communication Patterns. . . . . . . . . . . . . . . . . . . . . . . 74 3.5.3 Interference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.5.4 Power Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.6 Techniques to Improve Capacity . . . . . . . . . . . . . . . . . . . . . . 75 3.6.1 Mobility Increases Capacity . . . . . . . . . . . . . . . . . . . . 75 3.6.2 Using Directional Antenna Improves Capacity . . . . . . . 78 3.6.3 Multi-Input Multi-Output (MIMO) Increases Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6.4 Network Coding Increases Capacity. . . . . . . . . . . . . . . 84 3.6.5 MPT and MPR Improve Capacity . . . . . . . . . . . . . . . . 85 3.6.6 Hybrid Network Increases Capacity. . . . . . . . . . . . . . . 88 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.