ebook img

Morphological Intelligence: Measuring the Body’s Contribution to Intelligence PDF

188 Pages·2019·5.017 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Morphological Intelligence: Measuring the Body’s Contribution to Intelligence

Keyan Ghazi-Zahedi Morphological Intelligence Measuring the Body’s Contribution to Intelligence Morphological Intelligence Keyan Ghazi-Zahedi Morphological Intelligence ’ Measuring the Body s Contribution to Intelligence 123 Keyan Ghazi-Zahedi MaxPlanckInstitute for Mathematics Leipzig, Sachsen,Germany ISBN978-3-030-20620-8 ISBN978-3-030-20621-5 (eBook) https://doi.org/10.1007/978-3-030-20621-5 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To Rieke, Maren, and Marion Acknowledgements Thisbookwouldnothavebeenpossiblewithoutthesupportofmanypeople.First of all, I sincerely thank Nihat Ay for his support and critical remarks. This book would not have been possible without him. I thank Martin Bogdan for his support of my Habilitation at the University of Leipzig. I also thank the Max Planck InstituteforMathematicsandtheSciencesforprovidingmewiththeresourcesthat wereessentialtocompletingthisbook,aswellastheSantaFeInstituteforhosting me during the initial phase of writing it. I want to thank my collaborators, without whom the results presented in this work would not be possible: Guido Montúfar, Oliver Brock, Daniel Häufle, Raphael Deimel, Syn Schmitt, and Johannes Rauh. Last butnotleast, I want to thank Antje Vandenberg for herconstant supportover the last years. vii Funding This work was partly funded by the German Priority Program DFG-SPP 1527 “Autonomous Learning.” This publication was also made possible through the supportofagrantfromtheJohnTempletonFoundation.Theopinionsexpressedin this publication are those of the author(s) and do not necessarily reflect the views of the John Templeton Foundation. ix Contents 1 From Morphological Computation to Morphological Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 How Morphology Lifts the Computational Burden for the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Morphological Computation . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Morphological Control . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.3 Pre-processing (Sensors). . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.4 Post-processing (Actuators). . . . . . . . . . . . . . . . . . . . . . . 8 1.1.5 Brain Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.6 Behaviour-Enabling Physical Processes . . . . . . . . . . . . . . 11 1.2 What is Morphology, Computation, and Morphological Computation?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1 How Morphological Computation Has Changed over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Definition of the Term Morphology . . . . . . . . . . . . . . . . 14 1.2.3 Definition of the Term Computation . . . . . . . . . . . . . . . . 15 1.2.4 What is Morphological Computation? . . . . . . . . . . . . . . . 17 1.3 Morphological Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4 Organisation of This Book and Main Results. . . . . . . . . . . . . . . . 21 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 Information Theory—A Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1 Estimating Probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Mutual Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 Conditional Mutual Information. . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6 Kolmogorov Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 xi xii Contents 2.7 Causality Versus Correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.8 Entropy Estimation on Continuous State Spaces. . . . . . . . . . . . . . 48 2.8.1 Mutual Information Estimation on Continuous Data. . . . . 51 2.8.2 Conditional Mutual Information Estimation on Continuous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.9 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 A Theory of Morphological Intelligence . . . . . . . . . . . . . . . . . . . . . . 57 3.1 Related Work on Formalising Morphological Computation . . . . . . 58 3.1.1 Dynamical Systems Approach to Formalising Morphological Intelligence . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Causal Model of the Sensorimotor Loop . . . . . . . . . . . . . . . . . . . 64 3.3 Concept One: Quantifying Morphological Intelligence Based on the Effect of the Action on the World. . . . . . . . . . . . . . 68 3.3.1 MorphologicalIntelligenceasComparisonofBehaviour and Controller Complexity (MI ) . . . . . . . . . . . . . . . . . 71 MI 3.3.2 MI : A Causal Variation of MI . . . . . . . . . . . . . . . . . . 73 CA A 3.3.3 Agent-Intrinsic Variations of MI and MI . . . . . . . . . . 76 A CA 3.4 Concept Two: Quantifying Morphological Intelligence as the Contribution of the World to Itself. . . . . . . . . . . . . . . . . . . 80 3.4.1 Information Decomposition of MI . . . . . . . . . . . . . . . . 83 W 3.4.2 Agent-Intrinsic Variation of MI . . . . . . . . . . . . . . . . . . 87 W 3.5 Concept Three: Quantifying Morphological Intelligence as Synergy of Body and Brain . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.5.1 Maximum Entropy Estimation with the Iterative Scaling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.5.2 Quantifying Unique Information . . . . . . . . . . . . . . . . . . . 93 3.6 Concept Four: Quantifying Morphological Intelligence as In-Sourceable Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.7 Concept Five: Quantifying Morphological Intelligence as the Reduction of Computational Cost . . . . . . . . . . . . . . . . . . . 96 3.7.1 Denavit-Hartenberg Notation . . . . . . . . . . . . . . . . . . . . . 99 3.7.2 Denavit-Hartenberg for a Hexapod . . . . . . . . . . . . . . . . . 100 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4 Numerical Analysis of the Morphological Intelligence Quantifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.1 Parametrised Model of the Sensorimotor Loop. . . . . . . . . . . . . . . 110 4.1.1 Parametrisation of the Input Distribution p(w) . . . . . . . . . 110 4.1.2 Parametrisation of the Sensor Map b(sjw) . . . . . . . . . . . . 111 4.1.3 Parametrisation of the Policy p(ajs). . . . . . . . . . . . . . . . . 111 4.1.4 Parametrisation of the World Dynamics Kernel aðw0jw;aÞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Contents xiii 4.2 Numerical Results for CI(W0: W; A), UI(W0: WnA), MI , and SY MIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 W 0 4.3 Numerical Results for MI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 A 4.4 Numerical Results for MI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 MI 4.5 Numerical Results for MI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 CA 4.6 Numerical Results for C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A 4.7 Numerical Results for MI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 W 4.8 Numerical Results for C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 W 4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.1 Quantifying Morphological Intelligence in Soft Manipulation . . . . 133 5.1.1 Identifying Morphological Intelligence and Stupidity . . . . 135 5.1.2 Characterising Behaviours by Their Covariance. . . . . . . . 136 5.1.3 Extracting Motions That Only Result from Body- Environment Interactions . . . . . . . . . . . . . . . . . . . . . . . . 136 5.1.4 Avoiding Artefacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.1.5 Visualising Clusters of Grasp Behaviours . . . . . . . . . . . . 137 5.1.6 Determining Grasp Success . . . . . . . . . . . . . . . . . . . . . . 138 5.1.7 RBO Hand Grasp Simulations . . . . . . . . . . . . . . . . . . . . 138 5.1.8 Simulation Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1.10 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.11 Covariance Coefficients Can Guide an Automatic Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.1.12 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.2 Quantifying Morphological Intelligence in Muscle Models . . . . . . 143 5.2.1 Definition of Muscle and DC-Motor Models . . . . . . . . . . 144 5.2.2 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.2.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Appendix A: gomi.. .... .... ..... .... .... .... .... .... ..... .... 157

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.