ebook img

Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree PDF

2016·45.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree

remote sensing Article Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree AntoineLefebvre1,*,ChristopheSannier2,† andThomasCorpetti3,† 1 CNES,UMR6074IRISA,OBELIXTeam,Vannes56000,France 2 SIRS,Villeneuved’Ascq59650,France;[email protected] 3 CNRS,UMR6554LETGCOSTEL,Rennes35000,France;[email protected] * Correspondence:[email protected];Tel.:+33-2-9914-1847;Fax:+33-2-9914-1895 † Theseauthorscontributedequallytothiswork. AcademicEditors:ClementAtzbergerandPrasadS.Thenkabail Received:31March2016;Accepted:7July2016;Published:19July2016 Abstract: Monitoringwithhighresolutionlandcoverandespeciallyofurbanareasisakeytask that is more and more required in a number of applications (urban planning, health monitoring, ecology,etc.). Atthemoment,someoperationalproducts,suchasthe“CopernicusHighResolution ImperviousnessLayer”,areavailabletoassessthisinformation,butthefrequencyofupdatesisstill limiteddespitethefactthatmoreandmoreveryhighresolutiondataareacquired. Inparticular,the recentlaunchoftheSentinel-2AsatelliteinJune2015makesavailabledatawithaminimumspatial resolutionof10m,13spectralbands,wideacquisitioncoverageandshorttimerevisits,whichopens alargescaleofnewapplications. Inthiswork,weproposetoexploitthebenefitofSentinel-2images tomonitorurbanareasandtoupdateCopernicusLandservices,inparticulartheHighResolution Layer imperviousness. The approach relies on independent image classification (using already available Landsat images and new Sentinel-2 images) that are fused using the Dempster–Shafer theory. Experimentsareperformedontwourbanareas: alargeEuropeancity,Prague,intheCzech Republic,andamid-sizedone,Rennes,inFrance. Results,validatedwithaKappaindexover0.9, illustratethegreatinterestofSentinel-2inoperationalprojects,suchasCopernicusproducts,andsince suchanapproachcanbeconductedonverylargeareas,suchastheEuropeanorglobalscale. Though classificationanddatafusionarenotnew,ourprocessisoriginalinthewayitoptimallycombines uncertaintiesissuedfromclassificationstogeneratemoreconfidentandpreciseimperviousnessmaps. Thechoiceofimperviousnesscomesfromthefactthatitisatypicalapplicationwhereresearchmeets theneedsofanoperationalproduction. Moreover,themethodologypresentedinthispapercanbe usedinanyotherlandcoverclassificationtaskusingregularacquisitionsissued,forexample,from Sentinel-2. Keywords: Sentinel-2;urbanareas;Copernicus;datafusion;imperviousness 1. Introduction 1.1. MonitoringUrbanAreaswithRemoteSensing: ACopernicusLandMission Understandingtheurbangrowthphenomenonisamongthemajorissuesthatpublicserviceshave todealwith. Today,morethanhalfoftheworldpopulationlivesinurbanareas,anditisestimated thatthiswillreachuptotwo-thirdsby2025[1]. Inthecontextofglobalizationandclimatechange, notonlytheurbanizationprocessisfast,buttheconsequencesduetotheincreaseofimperviousness posesseriouschallengesrelatedtotheindicationofrisks(floods,heatwaveevents,pollution,etc.). RemoteSens.2016,8,606;doi:10.3390/rs8070606 www.mdpi.com/journal/remotesensing RemoteSens.2016,8,606 2of21 InEurope,theEuropeanCommissionconductsprojectstomonitorurbanareasinordertoserve regionalfundingandpolicymaking. Amongthose,theHighResolutionLayerImperviousnessDegree (HRLIMD),aswellastheUrbanAtlas,whicharepartoftheCopernicusLandmissions,arebasedon remotesensingdata. OneoftheobjectivesoftheCopernicusprogramdevelopedbytheEuropean Commissionistoprovideinformationproductsformonitoringthegrowthofurbanareasinorderto assesswhetherpoliciestoreduceurbansprawlareeffective. Amongthose,theHRLIMD,aswellastheUrbanAtlas(http://land.copernicus.eu/)arekey products based on remote sensing data. The strength of these Copernicus Land products relies ontheuseofhighresolution(spatial/temporal)remotesensingdata,whichprovidehomogeneity, repetitivenessandobjectivityoverthewholeofEurope,whereascompilingavailablelocaland/or nationaldatasetsthroughoutEuropeinordertocomparecitieswouldbedifficulttoachievesincethe datawouldoriginatefromdifferentmaterialsandmethods. TheHRLIMDconsistsofa20×20mgridcoveringallofEurope,includingTurkey,andaims at representing the degree of imperviousness within each grid cell from 0% to 100%. This layer hadalreadybeenproducedin2006,2009and2012andiskeyformonitoringurbansprawl. The2015 updatewillsoonbeproducedandwillcoincidewithanunprecedentedcoverageofremotesensing data that can be used as input for its production. Previous updates were primarily based on a semi-automatedapproach(mainlyduetothelimitedavailabilityofinputdata),andtheincreased availabilityofremotely-senseddatacanincreasethelevelofautomationtoproduceandupdatesucha largedataset.Inaddition,becauseofcloudcoverageinalargepartofEurope,thisamountofimages canensurecloud-freeanduniformresultsataspatialresolutionlessthanorequalto20mtofitthe HRL IMD specification. Large datasets are also critical to characterize vegetation phenology false positivestoreducepotentialconfusionbetweeninducedagriculturalbaresoilandartificialsurfaces. Allofthesecontributionsexpectedwiththeuseofmanydatarequirethedesignofinnovativeand efficientmethodstoprocesssuchanamountofdatainordertomaintainCopernicusLandproducts’ dataproductioncostsdown. Thesubstantialincreaseinremotely-senseddataavailabilityisprimarilyduetothelaunchof Sentinel-2Ain2015,whichwasdesignedspecificallytomeettheneedsoftheCopernicusprogram.The fullSentinel-2constellation(includingSentinel-2Aand-2B)willhavearevisitcycleoflessthanfive daysglobally(whereasLandsat-8isaround16days)andwillprovide13bandsfromvisibletoShort WaveInfrared(SWIR)associatedwiththreespatialresolutionsfrom10to60m. Themulti-temporal resolution ensures a better monitoring of land use and cover with better opportunities to obtain cloudlessmosaics;thewidespectralresolutionfacilitatesthethematicidentificationoflandcover[2], whilethehighspatialresolutionallowsfortheidentificationofsmallobjects,suchasindividualhouses orlandscapesstructures[3]. However,becausethelaunchofSentinel2Aisveryrecent,fewstudiesexistonhowitcouldbe usedformonitoringurbanareas[4]. Therefore,inthispaper,amethodbasedonexploitingSentinel-2’s unique properties is proposed to update the Copernicus High Resolution Imperviousness Layer. However,thelargeamountofdatageneratedraisesmethodologicalquestionstodealwithreliable, uncertainandcontradictoryinformation. Theseissuesarediscussedbelow. 1.2. UpdatingCopernicusProducts: ChangeDetectionandDataFusion Twomainapproachesarepossibletodetectstructuralchangesinremotesensingdata: directly detect changes from a pair of raw data or performing single classifications that are compared to highlightalteredregions. Thefirstapproachisoftenpreferredsinceasingleprocesshastheadvantage ofpreventingerrorsfrombeingaccumulatedthroughthetwoclassificationsteps. However,inthe contextofthe“online”updatingofurbanareaswhereclassifiedregionsinthefirstimagearealready available,thecomparisonwithanewclassificationissuedfromthenewimageappearsmorerational. Thisistheprocesschoseninthispaper.Here,inordertopreventfromtheaccumulationorerrorsissued RemoteSens.2016,8,606 3of21 fromindependentclassifications,weproposetoaccuratelyperformthisstepusingspecificdatafusion rules. Beforedescribingourapproach,wefirstreviewbrieflythemainchangedetectionapproaches: • Image to image comparison: A naive way to detect changes is to rely on differences, either computed from the input images or on features derived from the images. Relying on the simpledifferenceofrawdataislimited(becauseofknownproblemsrelatedtodifferencesin terms of acquisition), and a substantial number of techniques has been proposed to provide reliablemeasurements[5–8],forexamplestatisticalhypothesistests[9]orstatisticsonthespatial relationsbetweenpoints[10,11]. Fromthefeaturedifferences,thedetectionofchangescanalso beperformedusingsupervisedlearningtechniques[12].Thereadercanreferto[13]formore detailsonassociatedapproaches. • Post-classificationcomparison: Classificationplaysakeyroleinchangedetection, asitoften enablesonetorefinetheresults. Strategiesrangefromtheclassificationofthevariousobjects intheimages[14–16](inthiscase,thechangeisimmediatebycomparisonofthetwoclassified data) to post-classifications or to classification of the change features [17–19]. As for the first situation,thequalityoftheresultisstronglyrelatedtothesegmentation. In[20],theauthors havefoundthatpost-classificationusuallyunderestimatestheareasoflandcoverchange,but wherethechangewasdetected,itwasoverestimatedinmagnitude. Therefore,classifyingchange features seems a more appealing choice. In that context, one can mention the work of [21], wheretheauthorsuseanunsupervisedclassificationmixedwithavisualinterpretationofaerial photographstodetectlandcoverchanges. Wereferthereaderstothecompletereviewsin[22–25] foranoverviewofthechangedetectionissue. Though well performing techniques exist, only a few of them specifically take into account theproblemofhandlingaccuratelytheerrorsissuedfromindependentclassifications. In[26],the authorsproposetofusetheclassificationresultsinordertominimizetheomissionorthecommission errors. The approach introduced in this paper relies on the same idea. More precisely, we use the Dempster–Shaferfusiontheory,sincethisframeworkisespeciallyadaptedtodealwithuncertainty that can be derived according to previous classification performances (this theory is presented in Section3.4). Inaddition,ourprocessdealswithcloudcoverage,enablingacontinuousgrowthofthe areacoveredbyourapproach. Classifications of single remote sensing images generally contain errors due to constraints originatingfromboththedataandthealgorithmsused. Thisinaccuracy(oruncertaintyassociated withclassificationresults)dependson: 1. thecharacteristicsofthesensor: • itsspatialresolution(pixelscontaindifferentratiosofpureandmixedmaterials) • itsspectralresolutionandtheacquisitiondate; 2. theefficiencyoftheclassification. Thoughingeneralasimplealgorithmsuchasthemaximum likelihoodcanbeexpectedtobelessefficientthanamorecomplexone,suchasSupportVector Machine(SVM)orRandomForest(RF),nogeneralrulecanbeextracted; 3. theaccuracyofthelabeleddatausedtotrainandtesttheclassifiers. By taking into account all images issued from existing satellites, a large number of data can be acquired on a given area. However, because of the different nature of associated images, their classificationmayprovideresultsassociatedwithvariouslevelsofquality. Althoughselectingthe bestresultamongallavailableclassificationswouldseemarationalapproach,combiningthemby takingintoaccounttheirqualitiesshouldmakeitpossibletoreachahigherlevelofaccuracy. Thisis theideabehindtheconceptofdatafusion. Alargenumberoftechniquesisavailabletofusedata,and groupingthemintofamiliesisadifficulttask. Nevertheless,onecanroughlydistinguishthetwomain groupsoftechniquesbasedon: RemoteSens.2016,8,606 4of21 • probabilitytheory,whichaimsatdeterminingthestateofavariablegivenvariousobservations. For these families, we mainly find the Kalman filter and other data assimilation techniques dependingonthepresenceofmodelsforsensors(see,forexample,[27,28]); • evidence theory, where each decision is represented with a belief function associated with uncertainties(orinsomeapproaches,aparadox).Inthesefamilies,wefindDempster–Shafer Theory(DST)anditsvariants[29]ortheDezert–Smarandacheparadoxicalapproach[30]. Inaremotesensingcontext,theDempster–ShaferTheoryhasmainlybeenappliedtofacilitate the decision process for the classification in urban environments [31,32], but also in other various contexts(seabreezefrontidentification,forestrymonitoringormoregenerally,landcover[33–36]). Thoughwidelyusedinremotesensingdata,theDSThasonlyrarelybeenappliedinthecontextof largedatasetclassification(suchasacountryorcontinent)whereinformationavailabilityissuesare critical(intermsofrepetitiveness,cloudcover,acquisitionwindow,etc). Aswillbeshownlater,this ideaisexploredinthispaperwhere,byfusingindividualclassificationsacquiredatdifferentdates, urbanclassificationsaregeneratedcombiningbothanaccuracygreaterthantheindividualonesand cloud-freecoverage. ItisalsoproposedtocombineSentinel-2withLandsat-8imagesandtoevaluate thepotentialofourapproachasamulti-sourcefusion. 1.3. HighlightsofthePaper Inthispaper,itisproposedtoexploitSentinel-2datatodesignafully-automatictechniquethat updatesimperviousnessoverEuropebyensuring: • amoreprecisequalitythanexistingproducts; • anassociateddegreeofconfidence; • lesssensitivitytocloudcoverage. Aswillbeshowninthispaper,thegainintermsofqualityisduetotheuseofDempster’sfusion rulethataccuratelydealswithuncertaintiesissuedfromallclassifications. Italsoenablesonetogivea degreeofconfidencerelatedtoallestimations. Asforthelastpoint,becauseofthecloudcoverageall overmemberstates’territories,theproductionofcloud-freedatarequiresahugeamountofimages toensureuniformresultsataspatialresolutionlessthanorequalto20mtofitthespecificationof Copernicusproducts. 2. StudyAreasandData 2.1. StudyAreas Wechoosetovalidateourapproachesontwocitiesofdifferentsizeswithdifferenturbanplanning policies:Prague(overonemillioninhabitants,6900km2),thecapitaloftheCzechRepublic,andRennes (over200,000inhabitants,2500km2),amid-sizedcityinFrance. Theareasaredelimitedbythecontour oftheCopernicusFormerUrbanAreas(FUA)oftheUrbanAtlasdatasetandarevisibleinFigure1. Inpractice,theirinternalorganizationisdifferent: whileRennesismainlycomposedofmedium-sized buildings,individualhousesandindustrial/commercialareas,Pragueislargerandembedsalarge historicalcenterconnectedwithbigavenuestogetherwitholdandhighlevelapartmentsandsome modernskyscrapersinitsperiphery. Therefore,thesecharacteristicsarecomplementaryandillustrate thevarietyofsituationsoneencountersinpractice. RemoteSens.2016,8,606 5of21 2 1 1. Prague, Czech Republic 20 km 2. Rennes, France 20 km (Urban Atlas 2012) (Urban Atlas 2012) Figure1.Presentationofthestudyareas. 2.2. Data WetookapairofSentinel-2imagesforeachstudysite,thetimeshiftbetweenthetwoacquisitions beingaboutaweek. Thisistooshorttoobservesignificantvegetationchanges,butthesetwoimages remaininterestingtoovercomegapfillingissues(mainlybecauseofclouds). TosimulatemorecompleteseriesofSentinel-2,wealsoaddedsomeLandsat-8images,sincethis sensorisatthemomentthemostsimilarintermsofspecifications(spectralandspatialresolution). Landsat-8 has 11 bands from coastal blue to middle infra-red and has spatial resolution varying from 15 m to 60 m. Images acquired in spring (or early summer) and autumn were selected. All characteristicsofthedataarevisibleinTable1.Thistimeperiodismoresuitabletotakeintoaccount differentseasonalagriculturalpracticesandthereforetoevaluatetheabilityofourapproachtodetect urbanchangeswhilebeinginsensibletoagriculturalones. TheseLandsatimagesarefirstusedasa comparisonwiththeSentinel-2dataset. Inasecondstep,theyareincludedintheclassificationfusion processtoassessthepotentialitiesofSentinel-2inamulti-sensorapproach. Table1.Listofinputimages. # Prague # Rennes 1 12/10/2015-Landsat8 1 09/09/2015-Landsat8 2 30/08/2015-Sentinel-2A 2 28/08/2015-Sentinel-2A 3 13/08/2015-Sentinel-2A 3 21/08/2015-Sentinel-2A 4 17/07/2015-Landsat8 4 11/05/2015-Landsat8 3. Method Theoverallapproachiscomposedofsixsteps: 1. Datapreparation: extractingthecloudmaskandtexturedescriptorsofallimages 2. Superviseddatalearning: sampledatafromallimagesandbuildclassificationmodels 3. Mapproduction: classifyeachdatumfrommodelsofthepreviousstage 4. Classificationfusion: combineallclassifications 5. Changedetection: detectchangesontemporaldata 6. Accuracyassessment: validateourproducts TheworkflowispresentedinFigure2,andeachstepisdetailedinthefollowingssections. RemoteSens.2016,8,606 6of21 Reference Data Input Image t n t 0 1. Data Preparation 2. Supervised Learning Sample Selection Training sample Cloud Texture Feature Detection Extraction Training Cloud mask, Texture Feature Local uncertainty Classification Model 3. Map production OA, K, Global Classification Map tn Validation Uncertainty 4. Classification Fusion Data Fusion for t >= 2 n Final Map, Uncertainty 5. Change Detection 6. Accuracy Assesment Post-classification Sample Selection Training sample comparison + CAPI Change Change Map Validation detection OA, K Figure2.Blockdiagramoftheworkflow.Differenttimestepsarenotedt0...tn;OAstandsfor“Overall Accuracy”;Kisthekappaindex;CAPIstandsforComputer-AssistedPhotoInterpretation. 3.1. DataPreparation The data preparation step consists mainly of two operations: cloud mask detection and computationofthetexturedescriptorforeachimage.Astheyareclassifiedindependently,nospecific spectralprocessing,norradiometriccorrectionsarerequiredoneachdatum. RemoteSens.2016,8,606 7of21 3.1.1. CloudMaskDetection Weperformclouddetectioninasemi-automaticwaythroughk-meansclassificationonBand1 (coastalblue),Band8A(near-infrared)andBand10(watervapor),whicharethemostinterestingto highlightcloud. Becauseofthedifferencesinthesebands,cloudsandshadowsfallindistinctclusters thataremanuallylabeledascloudsorshadows. Here,weperformamanuallabelingsincewehave fewimages,butinanoperationalcontext,automaticmulti-temporalapproachescouldbeused,suchas MTCD(Multi-TemporalCloudDetection[37]). Theirfinalshapesaredelineatedafteramorphological openinginordertopreventfrombordereffects. This method has the advantages of being simple, not requiring atmospheric correction and providingefficientresults. AnexampleinFigure3presentstheresultofthecloudmaskdelineation overPrague. Eventhoughthecloudopacityislow,weobserveinthisimagethatcloudsareaccurately detected. Near-infrared, Red, Green 2km Cloudmask 2km (a) (b) Figure 3. Example of cloud mask detection on a Sentinel-2 image: (a) original Sentinel-2 image; (b)detectedcloudmask. ConcerningLandsat-8images,cloudmasksweredirectlydownloadedfromtheUSGSservers. These cloud masks rely on the Fmask (Function of mask) method, which is dedicated to Landsat missionsandextractsbothcloudsandshadows[38]. 3.1.2. ComputationoftheTextureDescriptor To characterize the content of high or very high resolution remote sensing images, texture descriptorsarepowerful,especiallyinurbanareas,asprovenbynumerousstudies[39–44].Amongthe existingtechniques,theso-calledPANTEXmethod[44],whichreliesontheanalysisoftheGreyLevels’ CoocurrenceMatrices(GLCM)andthecomputationofassociatedindexes[45],hasthepropertiesof beingsimpleandefficient. Tobeinvariantbyrotationandlesssensitivetosmalledgesthatappearin ruralornaturallandscapes,PANTEXkeepstheminimumvalueoftheenergycomputedonGLCMin variousdirections(10inpractice[44]). Thisenablesonetohighlightlocalcontrastvariation,which isaparticularlycrucialcriteriainanurbanarea. PANTEXhasalreadyprovenitsefficiencyinurban areas at a global level [46], and an example of PANTEX criteria is visible in Figure 4. In practice, PANTEXcriteriaarecomputedintheblueband(10-mresolution)inthecaseofSentinel-2andinthe panchromaticone(15mresolution)withLandsat-8. RemoteSens.2016,8,606 8of21 Near-infrared, Red, Green Pantex intensity (a) (b) Figure4.PANTEXcriterioncomputedonSentinel-2image:(a)originalSentinel-2image;(b)minimum PANTEXvalue.Asonecanobserve,localcontrastsissuedfromurbanareasareaccuratelyextracted. 3.2. SupervisedDataLearning Thissuperviseddatalearningstepaimsatsamplingdataandbuildingaclassificationmodelper imagethatwillbeappliedinthefurtherstep(Section3.3). Twoclasses,urbanareasandtherestofthe landscape,areforeseenintheclassificationoutput. Toextractlearningpointsinsideurbanareas,we usetheCopernicusHighResolutionLayerImperviousnessDegree2012(HRLIMD2012)asareference. Itisindeedassumedthaturbanareasin2012arestilllabeledasurbanregionsinthefuture. Indeed, urbanareasgrowslowlyandonsomesmallareascomparedtotheentirearablelandavailable. More quantitatively,giventhaturbanareasrepresentjustover1%oftheoveralllandinEuropeandthey grewbyabout0.6%peryearbetween1990and2000[47],theprobabilityofsamplingchangesremains below2%. Changesselectedinarandomsamplingcanthenbeconsideredasnoiseinthedatasource andshouldbeneglected. Thisenablesonetoprovidealargenumberofsamplesovertheentirearea onwhichaclassificationmodelcanbedesigned. Inpractice,amaximumsamplingof1,000,000pixelsovertheimageisperformed. Thenumberof samplesisnotequalforeachclass,butdependsontheirproportionintheimage. Forexample,given thattheurbanareasrepresentabout4%oftheimage,thedistributionofsamplesisabout4%inthe ‘urbanarea’classand96%forthe‘non-urban’one. Thisismoreadaptedtorepresentthedifferent spectralcharacteristicsoftherurallandscape’sclasses(vegetation,baresoil,water,forest). Theclassificationalgorithmusedforthisapplicationisbaggingtrees[48],whichisnotsensitiveto alargenumberoftrainingdata. Baggingispartoftheensemblemethods,whichalsoincluderandom forestandboosting. Ensemblemethodshavealreadyproventheirefficiencyfortheprocessingof remotesensingimages,inparticularinurbanenvironments[44,49]. Theyconstituteasetoftechniques forimprovingtheperformanceofsimpledecisiontrees. Theglobalideaistoperformmultiplerandom samplingsandtoconstructseparatetreemodels. Eachtreeprovidesacriterionrelatedtothefactthat theinputdatabelongtotheurbanclassornot. Then,achoiceprocedureonthebasisofeachresultis applied(averageingeneral). Thoughmanyotherclassificationtechniquescouldbeused,baggingremainsasuitablechoiceto deal with a large number of observations (as well as neural networks, for example), since their calibration is fast. Moreover, with such an approach, it is also possible to easily evaluate the discrimination power of each input variable by evaluating their impact on each node, which is ofprimeimportancetoassessthediscriminativepowerofSentinel-2bands[2]. AllspectralbandsarekeptinthefeaturevectoronwhichweaddPANTEXcriteria. Featuresare thenresampledbynearest-neighborsat(20×20m)withrespecttothespecificationsoftheCopernicus IMDHRLproduct. RemoteSens.2016,8,606 9of21 3.3. MapProduction Eachimagehasbeenclassifiedusingitsownbaggingtreemodelandvalidatedbycross-validation. Therefore,ineachpixel(x,y),aseriesofcriteriaC(x,y,t)(correspondingtotheconcatenationofthe resultsofallmodelsforeachtimet)thatbelongstotheurbanthematicclassisavailable. Aglobal qualitycriterioncanthenbeestimatedtoevaluateitsaccuracyandprovideanoveralluncertaintyfor eachdate. Basedonthekappaindex,theglobaluncertainty∆ (t)attimetiscomputedas: global ∆ (t) =1−k(t) (1) global wherek(t)isthekappaindexoftheclassificationattimet. Withthiscriterion,agoodclassification willgeneratelowglobaluncertaintyandviceversa. Thisensembleofcriteriaassociatedwiththeir globaluncertaintyneedsnowtobefusedineachpixeltogenerateaglobalmap. Thisisthescopeof thenextsection. 3.4. ClassificationFusion Inthisstep,eachpixelcontainsavaluerelatedtoitssimilaritytotheurbanclassassociatedwitha globaluncertainty. Wenowneedtosynthesizethisinformationtoprovideauniquemap. Tothisend, werelyonevidencetheoryandinparticularontheDempster–ShaferTheoryofevidence(DST).The DSTisbasedonaBayesianapproachandfusesasetofmassfunctionsissuedfromvarioussourcesof observationsassociatedwiththebeliefonsomehypotheses.Akeyadvantageisthatuncertainty(union ofhypotheses)isaccuratelymanagedwiththeDempster’sfusionrule. Appliedtoourclassification problem, let U and nU bethehypothesesthatagivenpixelbelongstotheurbanclassornot. The uncertainty is formalized as the union U ∪nU. For each time step t, if one computes three belief functionsmU,mnU andmU∪nU,suchthatmU +mnU +mU∪nU =1and: t t t t t t 1. mU isthebeliefthatthecorrespondingpixelbelongstotheurbanclass; t 2. mnU isthebeliefthatthecorrespondingpixeldoesnotbelongtotheurbanclass; t 3. mU∪nU isoveralluncertainty; t itispossibletocombinetwosourcesofinformationattimest andt (associatedwithmassfunctions 1 2 {mU,mnU,mU∪nU}and{mU,mnU,mU∪nU},respectively)usingDempster’sfusionrule. Thisisgiven, t1 t1 t1 t2 t2 t2 byassumptionH ∈ ΘofthepowersetΘ = {U,nU,U ∪nU},by: ∑ m (A)m (B) t1 t2 A,B∈Θ2,s.t.A∩B=H m(H) = [mt1 ⊕mt2](H) = 1− ∑ m (A)m (B) (2) t1 t2 A,B∈Θ2,s.t.A∩B=∅ (cid:124) (cid:123)(cid:122) (cid:125) K Roughly,thenumeratorcombinesthe4informationofthetwosourcesm andm inhypothesis t1 t2 H,whilethedenominatorK =1− ∑ m (A)m (B)isrelatedtotheconflict(itssecond t1 t2 A,B∈Θ2,s.t.A∩B=∅ termis0ifsourcesareinaccordanceandgrowwithconflict). Asthisfusionruleisassociative,to combineNsourcesofinformation,westartbyfusingthetwofirstones,thenfusingtheresultwith (cid:104)(cid:2) (cid:3) (cid:105) thethirdone,andsoon(thisreads: m (H) = [m ⊕m ]⊕m ...⊕m (H),andonlypairwise f t1 t2 t3 tN fusionsdefinedinEquation(2)areinvolved.). To apply this fusion rule to the classification of urban patterns, we need to define the mass functions mU, mnU and mU∪nU ateachtime t. Letusremindthat,aftertheclassificationstep,each t t t pixelcontainsineachtimetavalueC(x,y,t)relatedtoitssimilaritytotheurbanclass. Inadditionto thisvalue,aglobalaccuracy∆ (t)(seeEquation(1))isalsoavailableineachtimestep. global RemoteSens.2016,8,606 10of21 ThewaywegetmU(x,y),mnU(x,y)andmU∪nU(x,y)in(x,y)isthereforeanormalizationstep: t t t mUt (x,y) = C(cid:16)(x,y,t)/S(t)(cid:17) S(t) =1+∆ (t) and mnU(x,y) = 1−C(x,y,t) /S(t) (3) global t mU∪nU(x,y) = ∆ (t)/S(t) t global In practice, to accurately deal with clouds, each pixel identified in Section 3.1 as a cloud has uncertaintymU∪nU equalto1. t Finally, once fused, the final decision of the classification between urban/non-urban areas is chosenasthemaximumbetweenmU andmnU ineachpixel(x,y)(withm thefusedmassfunctions). f f f 3.5. ChangeDetectionandImperviousnessDegreeComputation Eachtimeanewdatumisavailable,achangedetectioncanbeperformedbythecomparisonof classifications.Thisenablesonetoeasilyupdatedatabases,aswillbeshownintheexperimentalparton theCopernicusHRLIMD2012,whichhasbeenvalidatedbytheEEA(EuropeanEnvironmentAgency). Thederivationofimperviousnessdegree(1%to100%)isproducedusinganautomaticalgorithm basedonacalibratedNormalizedDifferenceVegetationIndex(NDVI).AdescriptionoftheCopernicus ImperviousnessLayermethodologywasdescribedby[50]forthe2009updateandby[51]forthe2012 update. SimilarmethodswerealsoappliedintheUSAforthedevelopmentoftheNationalLand Coverdatabase[52]. 3.6. ChangeDetectionValidation Change detection validation is made from a stratified sampling on the change stratum and unchangedstratum. A density threshold of 30% was used to derive the built-up layer from the imperviousness layer[53].Thiswasnotintendedtobeaseparateproduct,butinsteadwascalculatedfortheverification processonly,becausedensityproductscannotbeverified. Basedontheassumptionthaturbanizedareasspreadmorethantheyappearrandomlyinthe landscape,samplingunchangedareaswasdoneina250-mbufferzonealongurbanizedareas. Inpractice,wefollowthesameprocessastheCopernicusproductstovalidateourresults[54]: 200 samples were selected including 100 samples in the change stratum and 100 samples in the unchangedstratum. Eachsamplerepresentsa100×100mpolygoninwhichamanualinterpretation wasperformed. Theassignedclassmatchesthemajorlandusesurfaceinsideapolygon. 4. ResultsandDiscussion The overall processing chain presented in this paper has been applied on the Sentinel-2 and Landsat-8imagesforthetwostudyareas. Independentclassificationshavebeenperformedineach image,andthefusionhasbeenappliedintwodifferentways: 1. Multitemporalfusion: classificationsissuedfromimagesofthesamesensorhavebeenfused. Thisyieldstworesults: fusionwithSentinel-2andfusionwithLandsat-8; 2. Multi-sourcefusion: allclassificationshavebeenfusedtoprovideasingleclassification. ResultsaredepictedinFigures5and6forPragueandRennes, respectively, andquantitative criteriaarepresentedinTables2and3,bothforindividualclassificationsandfusionsofthem. Because of cloud coverage, results cannot be provided in each pixel, and we also show in these tables the percentageofdataforwhichestimationsareavailable. From these table, itis worth noting that overall accuracies andkappa indexes are good in all situations. ThisfirstrevealstheabilityofourtextureindexbasedonPANTEXtoaccuratelyextract urbanareas. However,lookingatindividualclassifications,weobservethatoverallurbanareasare

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.