ebook img

Molecular Gas in NUclei of GAlaxies (NUGA): VI. Detection of a molecular gas disk/torus via HCN in the Seyfert2 galaxy NGC6951? PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Molecular Gas in NUclei of GAlaxies (NUGA): VI. Detection of a molecular gas disk/torus via HCN in the Seyfert2 galaxy NGC6951?

Astronomy&Astrophysicsmanuscriptno.n6951-dec06-rev (cid:13)c ESO2008 February5,2008 LE Molecular Gas in NUclei of GAlaxies (NUGA): VI. Detection of a molecular gas disk/torus via HCN in the Seyfert 2 ⋆ galaxy NGC 6951? M.Krips1,R.Neri2,S.Garc´ıa-Burillo3,F.Combes4,E.Schinnerer5,A.J.Baker6,A.Eckart7,F.Boone5,L.Hunt8,S. Leon9,andL.J.Tacconi10 7 0 0 1 Harvard-Smithsonian Center for Astrophysics, SMA project, 645 N A‘ohoku Pl., Hilo, HI,96720, USA; e-mail: 2 [email protected] 2 InstitutdeRadioAstronomieMillime´trique(IRAM),SaintMartind’He`res,F-38406,France n 3 ObservatorioAstrono´micoNacional(OAN)-ObservatoriodeMadrid,C/AlfonsoXII3,28014Madrid,Spain a 4 ObservatoiredeParis,LERMA,61Av.del’Observatoire,75014Paris,France J 5 Max-Planck-Institutfu¨rAstronomie,Ko¨nigstuhl17,69117Heidelberg,Germany 3 6 DepartmentofPhysicsandAstronomy,Rutgers,theStateUniversityofNJ,136FrelinghuysenRd.,Piscataway,NJ08854-8019, 1 USA 7 Universita¨tzuKo¨ln,I.PhysikalischesInstitut,Zu¨lpicherStr.77,50937Ko¨ln,Germany 1 8 INAF-IstitutodiRadioastronomia/SezioneFirenzeLargoE.Fermi5,50125Firenze,Italy v 9 IRAM,AvenidaDivinaPastora,7,Nu´cleoCentral,18012Granada,Spain 3 10 Max-Planck-Institutfu¨rextraterrestrischePhysik,Postfach1312,85741Garching,Germany 0 4 1 ABSTRACT 0 7 Context.SeveralstudiesofnearbyactivegalaxiesindicatesignificantlyhigherHCN-to-COintensityratiosinAGN(e.g.,NGC1068) 0 thaninstarburst(e.g.,M82)environments.HCNenhancementcanbecausedbymanydifferenteffects,suchashighergasdensities / and/ortemperatures,UV/X-rayradiation,andnon-collisionalexcitation.Asactivegalaxiesoftenexhibitintensecircumnuclearstar h formation,highangular resolution/high sensitivityobservationsareofparamount importancetodisentanglingtheinfluenceof star p formationfromthatofnuclearactivityonthechemistryofthesurroundingmoleculargas.ThetightrelationofHCNenhancement - o andnuclearactivitymayqualifyHCNasanidealtracerofmoleculargasclosetotheAGN,providingcomplementaryandadditional r informationtothatgainedviaCO. t Aims.NGC6951 housesnuclear andstarburstactivity,makingitanidealtestbedinwhichtostudytheeffectsofdifferentexcita- s a tionconditions on themolecular gas. Previous lower angular resolution/sensitivity observations of HCN(1–0) carriedout withthe : NobeyamaMillimeterarraybyKohnoetal.(1999a)ledtothedetectionofthestarburstringbutnocentralemissionhasbeenfound. v OuraimwastosearchfornuclearHCNemissionand,ifsuccessful,fordifferencesofthegaspropertiesofthestarburstringandthe i X nucleus. Methods.WeusedthenewA,B,CandDconfigurationsoftheIRAMPdBIarraytoobserveHCN(1–0)inNGC6951athighangular r resolution(1′′≡96pc)andsensitivity. a Results.Wedetectverycompact(≤50pc)HCNemissioninthenucleusofNGC6951,supportingprevioushintsofnucleargasstruc- ture.OurobservationsalsorevealHCNemissioninthestarburstringandresolveitintoseveralpeaks,leadingtoahighercoincidence betweentheHCNandCOdistributionsthanpreviouslyreportedbyKohnoetal.(1999a). Conclusions.WefindasignificantlyhigherHCN-to-COintensityratio(≥0.4)inthenucleusthaninthestarburstring(0.02-0.05).As forNGC1068,thismightresultfromahigherHCNabundanceinthecentreduetoanX-raydominatedgaschemistry,butahigher gasdensity/temperatureoradditionalnon-collisionalexcitationofHCNcannotbeentirelyruledout,basedontheseobservations.The compactHCNemissionisassociatedwithrotatinggasinacircumnucleardisk/torus. Keywords.Galaxies:individual(NGC6951)–Galaxies:active–Galaxies:nuclei–Galaxies:Seyfert–Galaxies:starburst 1. Introduction gions.WhilesurprisinglylargeR (upto1ormore)have HCN/CO beenobservedinAGN(e.g.,NGC1068,NGC1097,NGC5194; Overthe pastdecade,severalstudies(e.g.,Tacconiet al. 1994, Kohno et al. 1999a, Tacconi et al. 1994, Usero et al. 2004), Sternberget al. 1994,Kohnoetal. 1999a,b,2000,2001,2005) much smaller R (<0.3)are detected in pure SB or com- have shown that the HCN-to-CO intensity ratio (≡R ) HCN/CO HCN/CO posite (AGN+SB) galaxies (e.g., Arp220, M82, NGC 6951; canbesignificantlyhigherinactivegalacticnuclei(AGN;e.g., Gao&Solomon2004a,b,Nguyen-Q-Rieuetal.1992).Inactive NGC 1068) than in starburst (SB; e.g., M82) or quiescent re- galaxies have even lower ratios of R <0.1. Many differ- HCN/CO ent effects can contribute to increased R in active envi- HCN/CO Sendoffprintrequeststo:M.Krips ronments including higher gas opacities/densities and/or tem- ⋆ BasedonobservationscarriedoutwiththeIRAMPlateaudeBure peratures,non-standardmolecularabundancescausedbystrong Interferometer (PdBI). IRAM is supported by INSU/CNRS (France), UV/X-ray radiation fields or additional non-collisional excita- MPG(Germany)andIGN(Spain). 2 Kripsetal.:HCN(1–0)emissioninNGC6951 Fig.1.IntegratedHCN(1–0)emission(blackcontours)overlaidonCO(2–1)(colorscale;Schinnereretal.,inprep.,Garc´ıa-Burillo et al. 2005) in natural (left; 1a) and uniform weighting (right;1b); the CO and HCN emission have been both integrated from −200kms−1to+200kms−1.Weusedauv-taperforCOtomatchtheangularresolutionofourHCNdatawhichisbyafactorof∼2 lower,andobtainidenticalbeamsizes.Blackcontoursrunfrom3σto23σ(right:7σ)instepsof1σ=0.06Jybeam−1kms−1 (right: 1σ=0.10Jybeam−1 kms−1);CO(2–1):3σ=1.0Jybeam−1 kms−1(right:3σ=1.3Jybeam−1 kms−1).Theblackline(left)indicates themajoraxisofthebar(PA=100◦)andthegreylinethemajoraxisofthegalaxy(PA=130◦).Theblackline(right)representsthe mostextremecentralvelocitygradients(PA=(160±20)◦).The(0,0)positionisatα =20h37m14.123s andδ =66◦06′20.09′′ J2000 J2000 whichisslightlydifferentfromthephasecentreoftheobservations. tion such as IR pumping through UV/X-ray heated dust. Gao Component peakflux FWHM I I a HCN(1−0) CO(2−1) & Solomon(2004a)have ruledoutthe latter scenario for large (mJybeam−1) (kms−1) (Jybeam−1kms−1) scale HCN emission and the lack of any clear correlation be- N 11±2.0 150±6 1.8±0.2 60±6 tween the hard X-ray and MIR luminosity in AGN (Lutz et al. W 10±1.0 100±8 1.1±0.1 22±2 E 12±1.0 70±5 1.0±0.1 23±2 2004) reduces the significances of IR pumping also at small S 13±1.0 60±4 0.9±0.1 38±4 scales. However,Useroetal.(2004)presentstrongevidencein Cb 4.8±0.5 170±20 0.9±0.1 2.4±0.2 the case of NGC 1068 that the nuclear gas chemistry is dom- Totalfluxc 36.0±4.0d 320±14 12.0±1.0e 470±50e inated by X-ray radiation from the AGN yielding significantly differentmolecularabundancesthaninSBorquiescentenviron- Table1.HCN(1–0)lineparameters,obtainedatthevariouspeak ments (Lepp & Dalgarno 1996; Maloney et al. 1996). Recent (i.e.,notspatiallyintegrated)byfittingaGaussianprofiletothe IRAM30mobservationsofseveralHCNtransitionsinasample (naturallyweighted)data.Errorsincludeuncertaintiesofthefit of12nearbyactivegalaxiesalsoseemtosupportasignificantly and calibration. a from Schinnerer et al., in prep. b from uni- higherHCNabundanceinAGNthaninSBorinactiveenviron- formlyweightedmapstoavoidcontaminationbytheringemis- ments,ratherthanapuredensity/temperatureornon-collisional sion.c spatiallyintegratedovertheentireareaof±9′′;d inmJy; excitation effect (Krips et al., in prep.). If true, this has a se- e inJykms−1. vere impact on the interpretation of R as a measure of HCN/CO thedensetototalmoleculargasmassfractioninactivegalaxies (e.g., Gao & Solomon et al. 2004a,b) as discussed in Gracia´- recentlyhave high angularresolution/highsensitivity PdBI ob- Carpio et al. (2006). The study of nearby active galaxies also servations revealed faint CO(2–1) emission in the central 0.5′′ revealsthelimitationsofRHCN/CO asauniquediagnosticindis- (Garc´ıa-Burilloetal.2005;Schinnereretal.,inprep.).Thelatter tant sources whose starburst and AGN components cannot be observationsarepartofthePdBINU(cleiof)GA(laxies)project separated. (e.g., Garc´ıa-Burillo et al. 2003). We observed NGC 6951 in NGC6951isanactivegalaxyofHubbletypeSAB(rs)bcat HCN(1–0)tosearchfornuclearemissionandassessdifferences a distance of 24 Mpc (Tully 1988);its active nucleusis classi- betweentheSBringandtheAGN;theresultsoftheseobserva- fiedasatransitionobjectbetweenaLINERandatype2Seyfert tionsarepresentedhere. (Pe´rez et al. 2000).In addition to its AGN, NGC6951 also ex- hibitsa pronouncedSB ringat a radiusof5′′ (≡480pc) in Hα 2. Observations (Marquez&Moles1993,Wozniaketal.1995,Rozasetal.1996; Gonzalez-Delgado& Perez 1997, Perez et al. 2000) and radio NGC 6951 has been observed at 3mm and 1mm using all six emission(Vilaetal.1990,Saikiaetal.1994&2002).StrongCO antennaeof the IRAM PdBI in the new A, B, C and D config- and HCN emission is associated with the SB ring (e.g.,Kohno urations (see http://www.iram.frfor telescope parameters) dur- et al. 1999a,Garc´ıa-Burillo et al. 2005) while almost no emis- ing January, February (A+B), April and May (C+D) 2006 . sion had been hitherto foundin the centre of NGC 6951.Only The phase reference centre was set to α =20h37m14.470s J2000 Kripsetal.:HCN(1–0)emissioninNGC6951 3 CO, split up into several sub-maxima (N,W,E,S; Fig. 1) at the higherangularresolution(<3′′)ofthePdBI.TheHCNpeaksN andSareconsistentinpositionwiththoseinCO(Fig.1;Garc´ıa- Burilloetal.2005).AdditionalHCNpeaksarefoundtothewest (W)andeast(E)(seeFig.1).TheW-to-NandE-to-Speakratios are higher in HCN (∼0.6-1.0) than in CO (∼0.4-0.6; Table 1) explaining why the positions of the merged peaks in Kohno et al. (1999a) do not agree between HCN and CO. The HCN-to- CO ratios (≡R =I /I ; with I≡velocity inte- HCN/CO HCN(1−0) CO(1−0) gratedintensity)thusalsodifferbetweentheS/NandW/Epeaks. WhileR isfoundtoberoughly∼0.03atSandN(assum- HCN/CO ing I /I =1; Table 1), we estimate R ≃ 0.05 CO(2−1) CO(1−0) HCN/CO at E and W. This might indicate a variation of the gas den- sity/temperaturealongthering.TheHCNkinematicsinthering agreewellwiththoseseeninCOandarehencenotfurtherdis- cussedinthisletter. 3.2.Centralemission HCN(1–0) emission is detected in the central ∼1′′ (≃100 pc; ≡C) because of the higher sensitivity and angular resolution Fig.2. Iso-velocity map of HCN(1–0) (solid red & dashed of our data compared to the one obtained by Kohno et al. blue lines) overlaidto the integratedHCN(1–0)emission (grey (1999a), confirming previous hints found in CO(2–1) (Garc´ıa- scale & grey contours (same as in Fig. 1)). Contours run from Burillo et al. 2005; Schinnerer et al., in prep.). The nuclear vLSR=1349 kms−1 (dashed blue) to 1479 kms−1 (solid red) HCN component C appears to be compact and unresolved in in steps of 10 kms−1aroundthe dynamicalcenter (∼10 kms−1 the PdBI beam. Assuming the “HCN conversion” factor of offfromthesystemicvelocity).TheblacklinesindicatethePA X (=M (H )/L )=20+30 M (K kms−1 pc2)−1 from (=160±20◦)ofthevelocitygradient. SoHlCoNmon eHtCNal. (2199H2C)N, we fi−n10d a c⊙entral dense gas mass of M (=M(H +He))≈(2-10)·107M which is a factor of ∼3-17 gas 2 ⊙ and δ =66◦06′19.70′′. The 3mm receivers were tuned to higher than the mass of ∼6·106M⊙ derived from the CO(2– J2000 1) line (assuming I /I =1 (Table 1; see also Garc´ıa- the frequency of HCN(1–0) shifted to the LSR velocity of CO(2−1) CO(1−0) v =1424kms−1, while the 1mm receivers were set to the Burilloetal.2005).Thislargediscrepancycannotbesolelydue LSR to the large uncertainties of the conversion factors but might 13CO(2–1) line. The 1mm data will be discussed in a separate further indicate non-standard gas conditions in the AGN. The paper(Kripsetal.,inprep.).Upperandlowersidebandsateach HCN-to-CO ratio of the velocity integrated line flux amounts frequency had 580 MHz bandwidth and 1.25 MHz resolution. to ≥0.4 (Table 1; I /I =1). This is a factor of ∼4-8 Weatherconditionsweregoodthroughouttheobservationswith CO(2−1) CO(1−0) largerthaninthestarburstringandthevalueof0.09forthenu- awatercolumnvaryingbetween4mmand10mmandSSBsys- cleuspublishedbyKohnoet al. (1999a)indicatingthat the nu- temtemperaturesof100-150K(A+B)and100-200K(C+D)at clearHCNissignificantlyenhancedinNGC6951.Thus,unlike 3mm.3C273,3C454.3,2200+420and1749+096wereusedas Kohnoet al. (1999a),we concludethatthe nucleargas proper- bandpasscalibratorswhile1928+738and2037+511wereused tiesinNGC6951arenotthatdifferentfromthoseintheSeyfert asgaincalibrators.Fluxeshave beencalibratedwith MWC349 galaxiesNGC1068orM51,bothofwhichhavesimilarlyhigh andcheckedon3C273,1928+738and2037+511withtheflux central HCN-to-CO ratios. The molecular gas chemistry in the monitoringprogramoftheIRAMPdBI,resultinginanaccuracy AGN influencedregionsof NGC 1068and NGC 5194is dom- of ∼10% at 3mm. The data were calibrated, mapped and ana- inated by X-ray radiation (NGC 1068: e.g., Usero et al. 2004; lyzed using the standard IRAM GILDAS programs CLIC and M51:e.g.,Matsushitaetal.1998)suggestingasimilarscenario MAPPING.Usinguniformweighting,thesynthesizedbeamsize is1.25′′×0.87′′ atapositionangle(PA)of72◦ at3mm;natural inNGC6951.Thus,thecentraldensegasmassderivedviaHCN weightingresultsin2.78′′×2.27′′ataPAof112◦.Wereachan hastobeconsideredanupperlimit. rmsnoiseof∼0.8mJybeam−1 (∼1.2mJybeam−1) ata spectral ThecentralHCN emission showsthe steepestvelocitygra- resolution of 5 MHz (≡17kms−1) at 3.4 mm for natural (uni- dient at PA≈160◦ with a velocity range of ±70 kms−1 around form)weighting. the dynamical center over a radius of ∼0.5′′ (Fig. 2), eventu- ally indicating a gas rotation in a circumnuclear disk or torus. Even if accounting for the uncertainties of the PA, estimated 3. Results&Discussion to be ±20◦, the central kinematic axis is significantly different from the major axis of the galaxy (PA=135◦) and of the bar 3.1.Starburstring (PA=100◦). This non-alignmentmightbe caused by a different HCN emissionisclearlydetectedalongthe starburstring,con- inclination of the central gas disk/torus than of the galaxy, or, sistent with Kohno et al. (1999a).The total flux observed with alternatively,bynon-circularvelocitiesorawarp.However,the thePdBIislowerbyafactorof∼2-3thanthefluxobtainedwith central velocity gradient allows us to give a crude estimate of the IRAM 30m telescope (Krips et al., in prep.), i.e., some of theencloseddynamicalmass.Assumingaradiusof∼50pcand the HCN emission is resolved out by the PdBI. The two main avelocityrangeof±70kms−1,wefindM =5·107·(sini)−2M , dyn ⊙ maxima,whichare seenin HCN byKohnoetal. (1999a)atan withi≡inclinationofthedisk.Thisissimilartothegasmassof angularresolutionof∼4.5′′ andpeakatdifferentpositionsthan 0.6-8·107M , suggestingthatthe disk is seen closerto face-on ⊙ 4 Kripsetal.:HCN(1–0)emissioninNGC6951 thantoedge-on.Assumingfurthertheinclinationofthegalaxy Kohno, K.; Matsushita, S.; Vila-Vilar, B.; Okumura, S. K.; Shibatsuka, T.; (≈40◦;Garc´ıa-Burilloetal.2005)asroughestimatefortheone Okiura,M.;Ishizuki,S.;Kawabe,R.,TheCentralKiloparsecofStarbursts of the central gas disk, the enclosed dynamicalmass increases andAGN:TheLaPalmaConnection,ASPConferenceProc.Vol.249.ed. byJ.H.Knapen,J.E.Beckman,I.Shlosman,andT.J.Mahoney.ASP,2001, to ∼2·108M . This is of the order of the nuclear black hole ⊙ p.672. massof∼2·108M⊙,estimatedviathestellarvelocitydispersion Kohno,K.,Theevolutionofstarbursts:The331stW.andE.HeraeusSeminar, ofthebulge(σ =232kms−1fromHo&Ulvestad2001;seealso AIPConferenceProceedings,2005,Volume783,p.203 s Gebhardtet al. 2000).However,within a radiusof 50 pc, stars Lepp,S.;Dalgarno,A.,1996,A&A,306,21 Lutz,D.;Maiolino,R.;Spoon,H.W.W.;Moorwood,A.F.M.,2004,A&A,418, mightstillcontributeasignificantfractiontothedynamicalmass 465L aswellpointingtowardsanevenlowerinclinationofthenuclear Maloney,P.R.;Hollenbach,D.J.;Tielens,A.G.,1996,ApJ,466,561 diskthanassumed. Pe´rez, E.; Ma´rquez, I.; Marrero, I.; Durret, F.; Gonza´lez Delgado, R. M.; Masegosa,J.;Maza,J.;Moles,M.,2000,A&A,353,893 Ma´rquezI.,&MolesM.,1993,AJ,105,2090 4. Conclusions Matsushita,S.;Kohno,K.;Vila-Vilaro,B.;Tosaki,T.;Kawabe,R.,1998,ApJ, 495,267 We have presented high angular resolution/sensitivity observa- Nguyen,Q.-R.;Jackson,J.M.;Henkel,Ch.;Truong,B.;Mauersberger,R.,1992, tionsoftheHCN(1–0)emissioninNGC6951inthisletterwhich ApJ,399,521 RozasM.,BeckmanJ.E.,KnapenJ.H.,1996,A&A307,735 exploit the new ABCD configurationsat the IRAM PdBI. The SaikiaD.J.,PedlarA.,UngerS.W.,etal.,1994,MNRAS,270,46 mainresultscanbesummarizedasfollows: Saikia,D.J.;Phookun,B.;Pedlar,A.;Kohno,K.,2002,A&A,383,98 Solomon,P.M.;Downes,D.;Radford,S.J.E.,1992,ApJ,387,55 1. The two main HCN peaks in the ring seen by Kohno et Sternberg,A.;Genzel,R.;Tacconi,L.,1994,ApJ,436,131 al.(1999a)splitupintoseveralsub-maximawhichcoincide Tacconi, L.J.;Genzel, R.;Blietz, M.;Cameron, M.;Harris,A.I.;Madden, S., 1994,ApJ,426,77 withthosefoundinCO(2–1)byGarc´ıa-Burilloetal.(2005) Tacconi,L.J.;Blietz,M.;Cameron,M.;Downes,D.;Genzel,R.;Krabbe,A.; andSchinnereretal.(inprep.).However,theratiosofpeaks Sternberg,A.;Tacconi-Garman,L.E.;Weitzel,L.,1996,VA,40,23 withintheringdifferbetweenHCNandCO,probablyindi- Tielens,A.G.G.M.,&Hollenbach,D.,1985,ApJ,291,722 catingdifferentgasdensities/temperaturesalongthering. Tully, R.B., 1988, Nearby Galaxies Catalogue (Cambridge University Press, 2. We clearly detect compact HCN(1–0) emission in the nu- Cambridge) Usero, A.; Garc´ıa-Burillo, S.; Fuente, A.; Mart´ın-Pintado, J.; Rodr´ıguez- cleus of NGC 6951 tracing a dense molecular gas mass in Ferna´ndez,N.J.,2004,A&A,419,897 the range of ∼0.6-6×107M⊙. A position velocity cut taken VilaM.B.,PedlarA.,DaviesR.D.,etal.,1990,MNRAS242,379 alongPA=(160±20)◦,coincidingneitherwiththegalaxynor WozniakH.,FriedliD.,MartinetL.,etal.,1995,A&AS,111,115 the bar major axis, yields the steepest velocity gradient in the nucleus. The gradientand the compactnessof this cen- tral HCN emission suggest that it might arise in a rotating circumnucleargasdiskortoruswitharadiusof.50pc. 3. In contrast to Kohno et al. (1999a), we find significantly different HCN-to-CO line ratios in the starburst ring and the nuclear emission. While the starburst ring shows typi- cal R =0.02-0.05, HCN is significantly enhanced in HCN/CO the centre with R ≥0.4. Either the molecular gas HCN/CO in the nucleus is denser and/or hotter than in the starburst ring, increasing R , or the gas chemistry in the nu- HCN/CO cleus of NGC 6951 is dominated by X-ray radiation from the AGN, producinga higher nuclear HCN abundance and thusahigherR similartothecenterofNGC1068. HCN/CO References Blake,G.A.;Sutton,E.C.;Masson,C.R.;Phillips,T.G.,1987,ApJ,315,621 Gallimore,J.F.;Baum,S.A.;O’Dea,C.P.,2004,ApJ,613,794 Gao,Yu;Solomon,PhilipM.,2004a,ApJS,152,63 Gao,Yu;Solomon,PhilipM.,2004b,ApJ,606,271 Garc´ıa-Burillo,S.;Combes,F.;Hunt,L.K.;Boone,F.;Baker,A.J.;Tacconi,L. J.;Eckart,A.;Neri,R.;Leon,S.;Schinnerer,E.;Englmaier,P.,2003,A&A, 407,485 Garc´ıa-Burillo, S.;Combes, F.;Schinnerer, E.;Boone, F.;Hunt, L.K.,2005, A&A,441,1011 Gebhardt,K.,Bender,R.,Bower,G.,etal.,2000,ApJ,539,13 Gonza´lez-DelgadoR.M.,&Pe´rezE.,1997,ApJS108,199 Gracia´-Carpio, J.;Garc´ıa-Burillo, S.;Planesas,P.;Colina,L.,2006,ApJ,640, L135 Helfer,TamaraT.;Blitz,Leo,1997,ApJ,478,162 Ho,L.C.,&Ulvestad,J.S.,2001,ApJS,133,77 Kohno,K.;Kawabe,R.;Vila-Vilaro´,B.,1999,ApJ,511,157 Kohno, K.; Kawabe, R.; Vila-Vilaro´, B., The Physics and Chemistry of the Interstellar Medium, Proc. of the 3rd Cologne-Zermatt Symposium in Zermatt, Sep. 22-25, 1998, Eds.: V. Ossenkopf, J. Stutzki, and G. Winnewisser,GCA-VerlagHerdecke Kohno,K.,Kawabe,R.,Shibatsuka,T.,Matsushita,S.,ImagingatRadiothrough SubmillimeterWavelengths,ASPConferenceProceedings,Vol.217,ed.by J.G.MangumandS.J.E.Radford.ASP,p.364

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.