MOLECULARDYNAMICSSIMULATIONSTUDIESOFMATERIAL MODIFICATIONBYCHARGEDPARTICLEIRRADIATION By INKOOKJANG ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2004 Copyright2004 by InkookJang ACKNOWLEDGMENTS First,Iwouldliketoshowmysinceregratitudetomyadvisor,Dr.SusanB.Sinnott, forherconstantguidanceandencouragement.Hersupportandinstanthelpthroughout mygraduatecareerlaidasmoothwayformystudiesandresearchwork,andenabledme toachievemygoal.IamalsogreatlythankfultoallthemembersinDr.Sinnott’s researchgroupforacademicdiscussionandcheerfultalks. Finally,Iwishtoexpressmygreatappreciationtomybelovedparents. hi TABLEOFCONTENTS page ACKNOWLEDGMENTS iii LISTOFTABLES vi LISTOFFIGURES vii ABSTRACT ix CHAPTER GENERALINTRODUCTION 1 1 1.1MolecularSimulations 1 1.2MolecularDynamicsMethod 5 1.3PlasmaProcessing 7 1.3.1PlasmaModificationofPolymer 8 1.3.2FluorocarbonPlasma 8 1.3.3PolyatomicIonDeposition 9 1.4CarbonNanotubesJunctions 10 1.4.1CarbonNanotubes 10 1.4.2JoiningofCarbonNanotube 14 2 SIMULATIONMETHODS 16 2.1TheReactiveEmpiricalBondOrderPotential 16 2.2C-H-FPotential 19 2.3TheLennard-JonesPotential 23 2.4PeriodicBoundaryConditions 24 2.5Predictor-CorrectorAlgorithms 25 2.6TemperatureControlMethods 26 2.7TightBindingMethods 28 3 POLYATOMICIONBEAMDEPOSITIONONPOLYMERSURFACES 29 3.1SimulationDetails 31 3.1.1ContinuousFluorocarbonIonDepositiononPSSurface 32 3.1.2HydrocarbonIonDepositiononPSandPEsurfaces 34 3.2ResultsandDiscussion 34 IV 3.2.1ContinuousFluorocarbonIonDepositiononPS 34 3.3 3.2.2AngularInfluenceofCbHs^IonDepositiononPSSurface 52 3.2.3Polystyrenevs.Polyethylene 59 Conclusions 67 3.3.1ContinuousFluorocarbonIonDepositiononPS 67 3.3.2AngularInfluenceofCsHj^IonDepositiononPSSurface 68 3.3.3Polystyrenevs.Polyethylene 68 4 CARBONNANOTUBEWELDINGUNDERELECTRONBEAMIRRADIATION 70 4.1SimulationDetails 70 4.2ResultsandDiscussion 75 4.3Conclusions 86 5 GENERALCONCLUSIONS 88 LISTOFREFERENCES 91 BIOGRAPHICALSKETCH 101 V LISTOFTABLES Table page 22--1. Two-bodyparametersusedinequation(2-2),(2-3),(2-4),and(2-6) 20 32--2. ValuesofPfromequation(2-13)attheintegerpointsusedforcubicspline interpolation 21 2-3. AtomizationenergiesofvariousmoleculescalculatedbynewC-H-Fpotentialand semi-empirical(PM3)method 22 4. Lennard-Jonesparameters 23 1. Surfacedensityofindicatedspeciesthatremainbondedtocarbonatomsin,orare embeddedwithin,thePSsurfacesafterCsFj^deposition 38 3-2. Surfacedensityofindicatedspeciesthatremainbondedtocarbonatomsin,orare 3- embeddedwithin,thePSsurfacesafterCFa"^deposition 38 43--3. YieldofscatteringspeciesforCFa"^deposition 41 3-4. YieldofscatteringspeciesforCaFs"^deposition 41 3-5. Surfacedensityofindicatedspeciesthatremainbondedtocarbonatomsin,orare embeddedwithin,thePSsurfacesafter105CsFs"^depositionat100eV/ion 51 3-6. Surfacedensityofindicatedspeciesthatremainbondedtocarbonatomsin,orare embeddedwithin,thePSsurfacesafter105CsFs"^depositionat50eV/ion 51 3-7. Percentageofoccurrenceoftheindicatedeventsaveragedover80trajectoriesat differentincidentangles 53 8. PercentageofoccurrenceoftheindicatedeventsintheMDsimulationsof depositionaveragedover80trajectories 60 1. ThedimensionsofeachCNTpairandirradiationarea 74 4-2. SummaryofbondingatthejunctionsformedbetweenthefollowingpairsofCNTs byelectronbeamirradiationasdescribedinthetext 79 VI 1- LISTOFFIGURES 2- Figure page 2- 31--1. TheschemetodetermineBravaisvector 11 2. Structuremodelsofcarbonnanotubes 12 1. Schematicrepresentationofperiodicboundarycondition 24 2. Schematicdiagramoftypicalheatbathapplication 27 1. Modelsof(a)PSand(b)PEchains 31 3-2. SchematicrepresentationofinitialPSsubstrate 33 3-3. StructuremodelsofPSsurfacesanddepthprofileofFdensityafterionbeam depositionat50eV/ion 35 3-4. SnapshotformtheMDsimulationsthatshowsaCF2fragmentlinkingtwoPS chains 40 3-5. FuptakeandtotaldepositionyieldofFasfunctionoffluenceduringdeposition..42 3-6. DegreeofPSsurfaceetchingduringionbeamdeposition 44 3-7. AveragepenetrationdepthsofindicatedspeciesinthePSsurfaces 46 3-8. AportionofthePSstructureafterdepositionof240CaFs"^ions 47 3-9. StructuremodelsofpartofthePSsurfacesafter105CsFs"^iondepositionat50 eV/ionand100eV/ion 48 3-10.StructuremodelsofPSsurfacesanddepthprofilesofFdensityafter105CsFs”^ion deposition 49 3-11.Percentagesoftheindicatedproductspeciesthatremainbondedtocarbonatomsin thePSsurfaceorareembeddedinthePSsurface 55 3-12.SnapshotfromtheMDsimulationsshowingtheproductsofthedissociationofthe ionintoCH2fragmentsthatbondtothePSsurface 57 vii 3-13.AveragenumberofbrokenbondspertrajectoryinthePSsurfaceasaresultof depositionattheindicatedanglesoverthe80trajectories 58 3-14.Averagepenetrationdepthsofmajorspecies(C3H5,CaHn,CH2)fromtheincident ionsasafunctionofangle 59 33--15.Percentagesoftheindicatedproductspeciesthatremainbondedtocarbonatomsin, orareembeddedwithin,thePSandPEsurfacesat50and25eV 63 4- 3-16.AveragenumberofbrokenbondsinthePSandPEsurfacesperMDtrajectoryasa resultofCaffs'^depositionat50and25eV 65 17.Averagepenetrationdepthsofmajorspecies(C3H5,C2Hn,CH2)fromtheincident ions 67 1. Initialconfigurationofcrossednanotubesforelectronbeamirradiation 72 4-2. FinalstructureofeachCNTpairafterelectronbeamirradiationandannealing 76 4-3. Structuremodelsof(a)ideal(5,5)-(5,5)CNTjunctionand(b)hydrogenterminated (5,5)-(5,5)CNTjunction 80 4-4. ThechangeinenergyasafunctionofstrainduringthedeformationofweldedCNT pairsafterannealing 81 4-5. DOS(fullcurve)andeigenvalueparticipationratio(histogram)aroundtheFermi level(shiftedat£=0)forideal(5,5)-(5,5)CNTjunction 83 4-6. DOSandeigenvalueparticipationratioaroundtheFermilevelfor(5,5)-(5,5)CNT junctionproducedbyelectronbeamirradiation 84 4-7. Plotofthelongitudinaldistributionoftheelectronprobabilitydensityforthefirst feweigenvalues(«=0,...8)abovetheFermilevel(«=0)ofthe(5,5)-(5,5)CNT junctionproducedbyelectronbeamirradiation 85 viii AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy MOLECULARDYNAMICSSIMULATIONSTUDIESOFMATERIAL MODIFICATIONBYCHARGEDPARTICLEIRRADIATION By InkookJang May2004 Chair: SusanB.Sinnott MajorDepartment: MaterialsScienceandEngineering Chargedparticleirradiationprocesses,suchasionbeamdepositionandelectron beamirradiationareoftenusedtomodifythepropertiesofvariousmaterials.However, detailedreactionmechanismsthatleadtostructuralchangesinthesubstratesaredifficult todetermineexperimentally,asprimarilyindirectinformationisobtainedusing experimentalmethods.Computersimulationmethodsarecomplementarytoexperimental approachesandareabletoprovideinsightintothewayinwhichthesystemreachesits finalstate. Inthesestudies,moleculardynamicssimulationsareusedtoinvestigatepolyatomic ionbeamdepositiononpolymersurfacesandcarbonnanotubeweldingunderelectron beamirradiation.Theinteratomicforcesinthesimulationsaredeterminedusingthe reactiveempiricalbondorderpotentialforshort-rangedcovalentinteractionsandthe Lennard-Jonespotentialforlong-rangevanderWaalsinteractions.Forhydrocarbonion deposition,someinclinedanglesarefoundtobemoreefficientforthedepositionofthe IX precursorsnecessaryforpolymerthin-filmgrowththannormalincidencedeposition. Also,incidentenergiesof50eV/ionarepredictedtobemoreefficientthan25eV/ion, andpolystyrene(PS)substratesfacilitatethegrowthofhydrocarbonthinfilmsmorethan doespolyethylene. Instudiesoffluorocarboniondeposition,thesimulationsshowhowandwhy and playdifferentrolesinlow-energyplasmadepositionprocessesonPS.CFs"^ ionsdissociatemorereadilyonimpactandthelargenumberofFatomsthatareproduced formcovalentbondswiththePSchains,whichbothefficientlyfluorinatesthePSand slowsdownthinfilmgrowth.Incontrast,CsFs^ionsproducemorefluorocarbonpolymer filmprecursorsthatenhancethinfilmgrowth,whileatthesametimefluorinatingthe surfaceataslowerrate. Inthestudyofcarbonnanotubewelding,thestructureofthegeneratedjunctionsis characterizedbyalargedegreeofbondingdisorderthatleadstolowerstrengthand higherductilitythanthosecharacterizing“ideal”junctions.Thegeneratedjunctionsalso operateasquantumdots,incontrasttotheohmicbehaviorofidealjunctions. X