3 1 0 ModifiedAssociateFormalismwithoutEntropyParadox: 2 PartII. ComparisonwithSimilarModels n a ∗ J DmitryN. Saulov ,a, A. Y. Klimenkoa 5 aSchool of Engineering, The University ofQueensland, AUSTRALIA 1 ] r e hAbstract t oThemodifiedassociateformalismiscompared withsimilarmodels, suchastheclassicalassociatemodel, theassociatespeciesmodel andthe .modified quasichemical model. Advantages of the modifiedassociate formalismaredemonstrated. t a m Key words: Thermodynamic modeling (D),Entropy (C) - d n o c1. Introduction – dependenceofcoordinationnumbersofthesolutioncompo- [ nentsonthe mole numbersofdifferentpairsthatallow one 1 In this paperwe compare the modified associate formalism tosetthecompositionofmaximumorderingsoastocomply v(MAF) proposed in the first paper[1] with the classical asso- withtheexperimentaldataforeachbinarysystem individu- 5ciatemodel(CAM)describedbyPrigogineandDefay[2]and ally. 1theassociatespeciesmodel(ASM)describedbyBesmannand We refer to the second version of the modified quasichemical 2 Spear [3]. Where it is possible, we compare MAF with the modelasMQM(2000). 3 .classicalquasichemicalmodel(CQM)ofFowlerandGuggen- 1 heim [4]. We also compare MAF with two modifications of 0 2. ConfigurationalEntropyofMixing inBinarySolutions 3CQM. ThefirstmodificationsuggestedbyPeltonandBlander 1[5] include: :– selection of the coordination numbers that allow one to set In this section, we compare the molar configurational en- v i thecompositionofmaximumorderingsoastocomplywith tropiesofmixinggivenbythesolutionmodelsmentionedabove X the experimentaldata; with theoretical boundaries for the configurational entropy of r– anempiricalexpansionofthemolarGibbsenergyofthequa- mixing.Theseboundariesarediscussedimmediatelybelow. a sichemicalreactionaspolynomialsintermsofcoordination Theconfigurationalentropyofmixingisameasureofdisor- equivalent mole fractions of solution components,which is der and has its maximum value for an ideal solution which is usedforfittingavailableexperimentaldata. completely disordered.For any solid or liquid solution A−B, The first version of the modified quasichemical model is re- the configurational entropy of mixing can not exceed that of ferred to as MQM(1986)in the presentstudy. Furthermodifi- idealsolution.Ontheotherhand,whenvacanciesarenottaken cationsofthequasichemicalmodelintroducedbyPeltonetal. into account (which is the case in all considered models), the [6] are: configurationalentropyofmixingcannotbenegative.Theval- – expansion of the Gibbs energy of the quasichemical reac- uesofmolarconfigurationalentropyofmixingwhichareout- tion as polynomials in pair fractions (instead of equivalent sideofthese boundariesareparadoxical. molefractionsofsolutioncomponents),whichprovidesad- For each model, we consider the following three limiting vantagesin data-fitting; cases. (i) ThecaseofidealsolutionofA-particlesandB-particles. In this case, the Gibbs free energy changes on forming associatesthatconsistofbothA-particlesandB-particles. ∗ Corresponding author: School ofEngineering, The University of Queens- The configurationalentropy of mixing should reduce to land,St.Lucia,QLD4072,Australia. Phone:(07)3365-3677Fax:(07)3365- thatofthe idealsolutionmodel. 3670 Emailaddress:[email protected] (Dmitry N. Saulov). (ii) ThecaseofimmisciblecomponentsAandB.Inthiscase, ArticlepublishedinJournalofAlloysandCompounds473(12)(2009)157–162 the configurational entropy of mixing should equals to 0.9 zero. 0.8 (iii) The case of the highly ordered solution A−B. In this case,theGibbsfreeenergychangeonformingoftheas- 0.7 sociates of a particular composition and of a particular R 0.6 spacial arrangement of particles approaches −¥ . If the / quasichemecal model is considered, the Gibbs free en- onf 0.5 c ergychangeon forming (A−B)-bondsapproaches−¥ . s 0.4 The configurational entropy of mixing should be equal to zeroatthe compositionofmaximumordering. 0.3 0.2 2.1. ClassicalAssociateModel 0.1 Consider a solution of x moles of the component A and A 0 xtiBon=al1e−ntxroApmyoolfesmoixfitnhgescompgoivneenntbBy.tTheheclmasosliacralcoanssfiogcuiarate- 0A 0.2 0.4 xB 0.6 0.8 B1 conf model[2]is expressedas A B-associates only A2 B-associates and Theoretical 2 AB-associates range 2 (cid:229) s =−R(n ln(x )+n ln(x )+ n ln(x )). conf A1 A1 B1 B1 AiBj AiBj Fig.1.Molarconfigurationalentropyofmixinggivenbytheclassicalassociate i,j≥1 model inthe limit ofideal solution ofA-particles and B-particles. (1) Here, n , n and n are the mole numbers (in one mole 0.7 A1 B1 AiBj of the solution A−B), while x , x and x are the mo- A1 B1 AiBj larfractionsof A -monoparticles,B -monoparticlesand AB - 0.6 1 1 i j associates, respectively; R is the universal gas constant. Note that compositions of associates and sizes of associates (i+ j) R 0.5 are determined by a modeller. The equilibrium values of the / mole numbers are determined by minimisation of the Gibbs onf 0.4 c s free energy of the solution subject to the mass balance and nonnegativityconstraints(see,forexample,themonographby 0.3 PrigogineandDefay[2]formoredetails). NowconsiderthelimitwhentheGibbsfreeenergychanges 0.2 on forming the associates equal to zero. As pointed out by Lu¨cketal.[7],theclassicalassociatemodelgivesparadoxical 0.1 values of the molar configurational entropy of mixing, which arelargerthanthosegivenbytheidealsolutionmodel.Fig. 1, 0 for example, shows the configurational entropy curves given 0A 0.2 0.4 xB 0.6 0.8 B1 by the classical associate model where only A B-associates 2 Theoretical CAM areconsidered(solidline)andwhere A2B-associatesandAB2- range associatesareconsidered(dashedline). Fig.2.Molarconfigurationalentropyofmixinggivenbytheclassicalassociate As shown in the figure, the curves are outside of the the- model inthe limit ofthe highly ordered solution. oretically possible range. Note also that the entropy curve is notsymmetricwithrespecttoverticallinewithx =1/2when equalstozeroatthecompositionofmaximumordering,since B onlyA2B-associatesareconsidered.Toobtainasymmetricen- differentspatial arrangementsof particles in an A2B-associate tropy curve (which is expected in the limit of ideal solution) arenotconsideredintheclassical associatemodel. oneshouldconsiderboth A B-associatesandAB -associates. 2 2 Consider the limit when the Gibbs free energy changes on 2.2. AssociateSpeciesModel formingallassociatesapproach+¥ .Inthiscase,noassociates formandtheconfigurationalentropyofmixingequalstothatof Accordingtotheassociatespeciesmodel[3],theconfigura- theidealsolutionmodel.Intheory,however,theconfigurational tionalentropyof mixingof x molesof the componentA and entropyofmixingshouldbe zeroforany x . A B x =1−x molesof thecomponentBis givenby Nowconsiderthelimitofhighlyorderedsolutionandassume B A that the Gibbs free energy change of forming A2B-associates R (cid:229) approaches −¥ . The entropy curve given by the classical as- sconf=−q nAa·qBb·qln(xAa·qBb·q) . (2) sociatemodelinthiscaseisshowninFig.2.Asshowninthis a+b=1 ! figure,theentireentropycurveiswithinthetheoreticallypossi- Here, q is the size of species (the number of particles per an blerange.Notealsothattheconfigurationalentropyofmixing associate specie); n are the mole numbers and x Aa·qBb·q Aa·qBb·q 158 1 .4 0.7 1 .2 0.6 R 1 .0 R 0.5 / / onf 0.8 onf 0.4 c c s s 0.6 0.3 0.4 0.2 0.2 0.1 0 0 0 0.2 0.4 x 0.6 0.8 1 0 0.2 0.4 x 0.6 0.8 1 A B B A B B q= 1 q= 2 q= 3 Theoretical q= 1 q= 2 q= 3 Theoretical range range Fig.3.Molarconfigurationalentropyofmixinggivenbytheassociatespecies Fig.4.Molarconfigurationalentropyofmixinggivenbytheassociatespecies modelwiththespeciesAq,Bq,A2q/3Bq/3 andAq/3B2q/3 inthelimitofideal model inthe limit ofimmiscible components. solution. 0.7 0.6 are the molar fractions of the Aa·qBb·q-species. Similar to the classicalassociatemodel,thesizeandcompositionsofspecies R 0.5 aredeterminedbya modeller. / Consider the limit of ideal solution, assuming that the so- onf 0.4 c lution consists of the associate species A , B , A B and s q q 2q/3 q/3 A B . The Fig. 3 shows the entropy curves given by the q/3 2q/3 0.3 associatespeciesmodelforq=1,q=2andq=3.Incontrast to the classical associate model, one can adjust the configura- 0.2 tionalentropyofmixing,usingtheadditionalparameterq.For thisparticularsetofspecies,theselectionofq=2resultinthe 0.1 entropycurvewhichisclosed(thoughlocatedoutsidethetheo- reticallypossiblerange)totheentropycurvegivenbytheideal 0 solutionmodel.AsshowninFig. 3,theselectionq=1results 0 0.2 0.4 x 0.6 0.8 1 A B B in substantial overestimationof the configurationalentropyof mixing,whiletheselectionq=3givesunderestimatedvalues. q= 1 q= 2 q= 3 Theoretical range Consider the limit of immiscible components, that is, the Gibbs free energy changes on forming the species A2q/3Bq/3 Fig.5.Molarconfigurationalentropyofmixinggivenbytheassociatespecies and A B approach +¥ . The entropycurvesgiven by the model inthe limit ofhighly ordered solution. q/3 2q/3 associate species model in this case are shown in Fig. 4. As 2.3. ModifiedAssociateFormalism shown in this figure, the associate species modeloverestimate theconfigurationalentropyofmixinginthelimitofimmiscible components.However,theentropycurvetendstotheoretically In the modified associate formalism the configurationalen- expectedone(s ≡0),whenqincreases. tropyofmixingis givenby(seeEq.(44)in Ref.[1]) conf Now consider the limit of highly ordered solution. Assume alsothattheGibbsfreeenergychangeonformingtheassociate s =−R (cid:229) Jk1(cid:229),...,krn[j] ln x[kj1],...,kr , (3) scpuervceiegsivAe2nq/b3yBqth/3eaaspsporcoiaactehespse−ci¥es.mFoigd.e5linshthoiwsscatshee.Aenstrsoepeny conf k1,...,kr∈Sm j=1 k1,...,kr dk[1j],...,kr fromFig.5,theentropycurvewith q=3isentirelylocatedin where all the notationshave the same meaning as in Ref. [1]. the theoretically possible range. If q=2, however, small part In contrast to previous modifications of the associate model, of the entropy curve (approximately, for 0 <x <0.075) is the compositions of associates that have to be considered are B located outside the theoretically possible range. The selection definedbythesize ofassociates. q=1 results in paradoxical values of configurationalentropy Considerthe limit of ideal solution. In this limit, the Gibbs approximatelyfor0<x <0.25and0.6<x <1. free energies of the reactions of forming different associates B B 159 0.7 0.7 0.6 0.6 R 0.5 R 0.5 / / onf 0.4 onf 0.4 c c s s 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 0.2 0.4 x 0.6 0.8 1 0 0.2 0.4 x 0.6 0.8 1 A B B A B B m=3 m= 6 Theoretical m=3 m= 6 Theoretical range range Fig.6.Molarconfigurational entropy ofmixinggiven bythemodifiedasso- Fig.7.Molarconfigurational entropy ofmixinggivenbythemodifiedasso- ciate formalism in the limit of immiscible components. ciate formalism in the limit ofhighly ordered solution. equal to zero. As demonstrated in the previous paper [1], the equivalent fractions y and y are defined as (see Eq. (6) in A B configurationalentropy of mixing correctly reduces to that of Ref.[6]) theidealsolutionmodelforarbitrarysize ofassociates. Now consider the limit of immiscible components, where yA =ZAnA/(ZAnA+ZBnB) (6) the Gibbs free energies of the associate that consist of both y =Z n /(Z n +Z n ), A-particles and B-particles approach +¥ . In this case, Eq. (3) B B B A A B B reducesto whereZ andZ arethecoordinationnumbersofthesolution A B R components A and B, respectively. As demonstrated by Pel- s =− (x ln(x )+n ln(x )). (4) conf m A A B B tonandBlander[5]forconstantcoordinationnumbersandby Pelton et al. [6] for variable coordination numbers, the modi- wheremisthesizeofassociates.Theentropycurvesform=3 fied quasichemical model correctly reduces to the ideal solu- and m=6 are shown in Fig. 6. As seen from this figure, the tion model, when the Gibbs free energy change on forming entropycurvesareentirelylocatedinthetheoreticallypossible (A−B)-pairsD g equalstozero. range and tendsto the theoreticallyexpectedcurve(s ≡0) AB conf IntheframeworkofMQM(1986)(themodifiedquasichemi- with increasingthesize ofassociates. calmodelafterPeltonandBlander[5]),thecoordinationnum- Consideringthelimitofhighlyorderedsolution,weassume bersareassumedtobeconstantandareselectedtosetthecom- also thatthe Gibbsfreeenergyofassociate with the composi- positionofmaximumorderingx∗ andtosatisfytheconditions tionA2Bandwithaparticularspatialarrangementofparticles s =0atx∗ whenD g →−¥ B.Thisresultsin(seealsoEqs. approaches−¥ .Theentropycurvesform=3andm=6given conf B AB (30)and(31)inRef. [5]) bythemodifiedassociateformalisminthiscaseispresentedin Fig. 7. In this case, the curves are also entirely located in the Z =−(x∗ln(x∗)+(1−x∗)ln(1−x∗))/(x∗ln(2)) theoreticallypossiblerange. B B B B B B (7) Z =Z x∗/(1−x∗). A B B B 2.4. ModifiedQuasichemicalModel(1986) Similartotheexamplesdescribedabove,consideronemole ofbinarysolutionA−Bandassumethatx∗ =1/3.Inthiscase, B In the modified quasichemical model, the molar configura- Z =2.75489 and Z =1.37744. In the limit of immiscible B A tionalentropyofmixingisgivenby(see Eq.(10)in Ref.[6]) components,D g →+¥ .Themolarconfigurationalentropyof AB mixinggivenbythecurvesgivenbyMQM(1986)inthiscaseis sconf=−R(xAln(xA)+xBln(xB)) presentedinFig.8.Asshowninthisfigure,MQM(1986)gives −R n ln xAA +n ln xBB +n ln xAB . paradoxical, negative values of the configurational entropy of (cid:20) AA (cid:18) y2A (cid:19) BB (cid:18) y2B (cid:19) AB (cid:18)2yAyB(cid:19)(cid:21) mixingfor0<xB<1/3. (5) Now consider the limit of highly ordered liquid, that Here, x and x are the molar fractions of the components A is, D g → −¥ . Fig. 9 shows the entropy curve given by A B AB and B; n and x (i,j=A,B) are the mole number and the MQM(1986) in this case. As seen from Fig. 9, the curve is ij ij molar fraction of (i− j)-pairs, respecively. The coordination- entirelylocatedinthe theoreticallypossiblerange. 160 0.7 assuggestedbyPeltonetal. [6],namely: 0.6 ZA =ZB =ZB =6; ZA =3. (9) AA BB BA AB 0.5 Fig. 10 demonstrates that MQM(2000) gives paradoxical val- R uesoftheconfigurationalentropyofmixingfortheentirecom- / 0.4 positionalrangein thelimitofofimmisciblecomponents. nf o c s 0.3 1.0 0.2 0.5 0.1 R 0 / nf 0 o c -0.1 s 0 0.2 0.4 x 0.6 0.8 1 A B B -0.5 Theoretical MQM(1986) range Fig. 8. Molar configurational entropy of mixing given by the modified qua- -1.0 sichemical model (1986) in the limit ofimmiscible components. 0.7 -1.5 0 0.2 0.4 x 0.6 0.8 1 0.6 A B B Theoretical MQM(2000) range R 0.5 Fig. 10. Molar configurational entropy of mixing given by the modified / onf 0.4 quasichemical model (2000) inthe limit ofimmiscible components. c s Now consider the limit of highly ordered solution, that is, 0.3 D g → −¥ . The entropy curve given by MQM(2000) in AB this case is presented in Fig. 11. As seen form this figure, 0.2 MQM(2000) gives negative values of the configurational en- tropyofmixinginthevicinityofthecompositionofmaximum 0.1 ordering. 0 0.8 0 0.2 0.4 x 0.6 0.8 1 A B B 0.6 Theoretical MQM(1986) range 0.4 Fig. 9. Molar configurational entropy of mixing given by the modified qua- R sichemical model (1986) in the limit ofhighly ordered solution. / 0.2 nf o c 2.5. ModifiedQuasichemicalModel(2000) s 0 -0.2 IntheframeworkofMQM(2000)(themodifiedquasichem- icalmodelafterPelton etal.[6]),the configurationalnumbers -0.4 areassumedtobecomposition-dependant.Thefollowingequa- tions for the coordination numbers have been suggested (see -0.6 Eqs.(19)and(20)inRef. [6]): -0.8 1 1 2n 1 n = AA + AB 0 0.2 0.4 x 0.6 0.8 1 ZA ZAAA2nAA+nAB ZAAB2nAA+nAB A B B (8) Theoretical 1 1 2nBB 1 nAB MQM(2000) range = + . Z ZB 2n +n ZB 2n +n B BB BB AB BA BB AB Fig. 11. Molar configurational entropy of mixing given by the modified Considerthelimitofimmisciblecomponents(D g →+¥ ), quasichemical model (2000) inthe limit ofhighly ordered solution. AB assumingthatthe constantsZA , ZB , ZA andZB are chosen AA BB AB BA 161 2.6. ClassicalQuasichemicalModel Now consider the solution discussed in in Ref. [1] in the frameworkoftheassociatespeciesmodel.Thatis,weconsider Itisimportanttonotethattheclassicalquasichemicalmodel the associate species Aq, Bq, A2q/3Bq/3 and Aq/3B2q/3 of the ofFowlerandGuggenheim[4](withZA=ZB=1/2)correctly size q.Inthiscase,chemicalactivityaB isgivenby reducestotheidealsolutionmodelwhenD gAB=0.Inthelimit a =x1/q , (10) ofimmisciblecomponents,theconfigurationalentropyofmix- B Bq ing given by this model correctly reduces to the theoretically where x is the molar fraction of the species B . Eq. (28) in Bq q expectedcurve(s ≡0).Inallothercases,theclassicalqua- Ref.[1] reads conf smicixhienmgicwahlimchodaerelgwivitehsinvatlhueesthoefothreeticcoanllfiygpuorastsiiobnlealreanntgreo.pTyhoef daB = 1x1/q−1 dxA −1 . (11) dx q Bq dx applicabilityoftheclassicalquasichemicalmodel,however,is A (cid:18) Bq(cid:19) limitedtothosechemicalsolutions,inwhichmaximumorder- Using the technique described in Section 6 of the previous ingoccursatthecompositionx =1/2. paper[1],oneverifiesthat B dx 4 1 A =−1− e t− e t2 2.7. Summary 2 1 dx 9 9 The classical associate model results in paradoxically large Bq +29(e 2+e t12t)+11+e +32e 22te+t13e 1t2 (12) values of the configurational entropy in the limit of ideal so- (cid:0)3 2 3 1 (cid:1) lution,whilegivingtheoreticallypossiblevaluesoftheconfig- Here,t≡ x /x 1/3,e ≡(cid:0)exp −D g (cid:1) /RT ande ≡ urationalentropy of mixing in othertwo limits. The associate Aq Bq 1 A2q/3Bq/3 2 species modelcan give paradoxicallylarge values in the limit exp −D g(cid:0)A B /(cid:1)RT , while D (cid:16)gA B and D gA(cid:17) B are q/3 2q/3 2q/3 q/3 q/3 2q/3 ofidealsolutionandinthe limitofhighlyorderedsolution. them(cid:16)olarGibbsfreeen(cid:17)ergiesofformationofA2q/3Bq/3-species The modified quasichemical model after Pelton and Blan- andA B -species,respecively. q/3 2q/3 der [5] results in paradoxically small, negative values of the SubstitutingEq.(12)intoEq.(11)andtakingthelimitwhen configurationalentropyinthelimitofimmisciblecomponents. xA→0,oneverifiesthat ThemodifiedquasichemicalmodelafterPeltonetal.[6]gives 3 paradoxicallysmall,negativevaluesinthelimitofimmiscible lim(daB/dxA)=− . (13) xA→0 q componentsandin thelimitofhighlyorderedsolution. Thisdemonstratesthat,foranyfinite valuesof D g and Themodifiedassociateformalism[1]andtheclassicalqua- A2q/3Bq/3 D g ,chemicalactivitya givenbytheassociatespecies sichemical model [4] give theoretically possible values of the Aq/3B2q/3 B modelvariesas(1−x )onlywhenq=3.Inthelimitofhighly configurational entropy in all considered limits. The classical A orderedsolution(D g →−¥ ),a variesas(1− 3 x )in quasichemicalmodelalsocorrectlyreducestothetheoretically A2q/3Bq/3 B 2q A thevicinityofx =0. expectedcurveinthelimitofimmisciblecomponents.Theap- A It is also important to note that, in the framework of the plicability of the classical quasichemical model, however, is associate species model, one can consider the species A , B limited. q q andA B only,sincethesetofspeciestobeconsideredis 2q/3 q/3 determinedby a modeller. Formally setting D g =+¥ , A B 3. Dilute Solutions q/3 2q/3 Eq.(12)reducesto Pelton et al. [6] consideredbinarysolution, in which maxi- dxA =−1−1e t2+2e 1t 1+13e 1t2 . (14) mumorderingoccursatthe composition xB=1/3inthelimit dxBq 9 1 9 t(cid:0)2+23e 1t (cid:1) ofhighlyorderedsolution(Gibbsfreeenergychangeonform- SubstitutionofEq.(14)intoEq.(11)(cid:0)andtaking(cid:1)thelimitwhen ing(A−B)-pairsapproaches−¥ ).Itwasdemonstratedthat,in x →0 gives A theframeworkofthemodifiedquasichemicalmodel,chemical 3 activity a of the componentB in the varies in the vicinity of lim(daB/dxA)=− . (15) B xA→0 2q x =0as (1−x )eveninthislimitingcase. A A In this case, a varies in the vicinity of x =0 as (1− 3 x ) Similar solution has also been considered in Ref. [1] in the B A 2q A foranyvalueofD g . framework of the modified associate formalism. As demon- A2q/3Bq/3 The examples presented above indicate that the set of as- strated, chemical activity a varies as (1−x ) only for finite B A values of D g and D g . Here, D g and D g are the mo- sociate species and the size of species should be carefully se- 2,1 1,2 2,1 1,2 lected, when the associate species model is applied for dilute lar Gibbs free energy changes on forming A B-associates and 2 solutions. AB -associates, respectively.Inthelimitofhighlyorderedso- 2 lution (D g →−¥ ), a varies as (1−x /2). Note also that 2,1 B A the interval in the vicinity of x =0, in which a can be ap- 4. Settingthe CompositionofMaximumOrdering A B proximated as (1−x ), decreases with the decrease in D g . A 2,1 Thisshouldbetakenintoconsideration,whenthemodifiedas- Modelling of multicomponentsystems requires a provision sociate formalismisusedformodellingdilute solutions. for setting the composition of maximum ordering so as to 162 comply with the experimental data for each sub-system (bi- Acknowledgment nary,ternary,quaternaryandsoon)individually.Associate-type modelsallow to dothis in a straightforwardway by including ThepresentworkhasbeensupportedbytheAustralianRe- ineachsub-systemtheassociates,whichcompositioncoincides searchCouncil. with that of maximum ordering in a particular sub-system. In thecaseoftheclassicalassociatemodelortheassociatespecies References model,amodellercanarbitrarilyincludetherequiredassociates or the associate species. In the case of the modified associate [1] D. N. Saulov, I. G. Vladimirov, A. Y. Klimenko, Modi- formalism,inwhichthecompositionsofassociatesaredefined fied associate formalism without entropy paradox Part I: bytheirsize,oneshouldselecttheadequatelylargesizeofas- Model Description, Submitted to Journal of Alloys and sociatestoincludetherequiredcompositions. Compounds. Incontrasttoassociate-typemodels,therearenoprovisions [2] I.Prigogine,R.Defay,ChemicalThermodynamics,Long- for setting the composition of maximum ordering for each mans,GreenandCo., 1954. ternary, quaternary and so on sub-systems individually nei- [3] T. M. Besmann, K. E. Spear, Thermochemical modeling therintheframeworkofMQM(1986)norintheframeworkof ofoxideglasses,JournaloftheAmericanCeramicSociety MQM(2000). Furthermore, the composition of maximum or- 85(12)(2002)2887–2894. deringcannotbesetindependentlyevenforbinarysub-systems [4] R. H. Fowler, E. A. Guggenheim, Statistical Thermody- intheframeworkofMQM(1986).Toovercomethisdisadvan- namics,CambridgeUniversityPress, 1939. tage forbinary sub-systems, Pelton et al. [6] suggested to use [5] A. D. Pelton, M. Blander,Thermodynamicanalysisof or- variable coordination numbers given by Eqs. (8). This modi- dered liquid solutions by a modified quasichemical ap- fication,however,leadstomathematicalandthermodynamical proach- application to silicate slags, MetallurgicalTrans- inconsistencies of MQM(2000).These inconsistencies are de- actionsB:ProcessMetallurgy17B (1986)805–815. scribedimmediatelybelow. [6] A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin, Consider the case, in which the coordination numbers are givenbyEqs.(8)andtheconstantsZA ,ZB , ZA andZB are Y. Dessureault,The modifiedquasichemicalmodelI - Bi- AA BB AB BA narysolution,MetallurgicalandMaterialsTransactionsB: givenbyEqs.(9).Firstly,asdemonstratedinRef.[8],thetotal ProcessMetallurgyandMaterialsProcessingScience31B mole number of pairs n depends on the extent of the qua- tp (2000)651–659. sichemical reaction (Eq. (1) in Ref. [6]). More precisely, n tp [7] R.Lu¨ck,U.Gerling,B.Predel,Anentropyparadoxofthe decreasesby1/2molepereachmoleof(A−B)pairsformed. association model, Zeitschrift fur Metallkunde 80 (1989) Thisresultcontradictstotheequationofthequasichemicalre- 270–275. action(seeEq.(1)inRef.[6]),whichunderliesthequasichemi- [8] D.Saulov,Shortcomingsoftherecentmodificationsofthe calmodel.AccordingtoEq.(1)inRef.[6],n doesnotchange tp quasichemical solution model, Calphad - Computer Cou- inthequasichemicalreaction.Secondly,whenthecoordination pling of Phase Diagramsand Thermochemistry31 (2007) numbersZ andZ varywithn ,theexpressionfortheGibbs A B AB 390–395. free energy of the solution given by Eq. (9) in Ref. [6]) is in error. Using Eqs. (1-3,19,20)in Ref. [6], one verifies that the correctexpressionin thiscaseis Z Z n G= A n g◦+ B n g◦−TD Sconfig+ ABD g . (16) ZA A A ZB B B 2 AB AA BB Here,allthenotationshavethe samemeaningasin Ref.[6]. 5. Conclusions The modified associate formalism has been compared with similarmodels.Asdemonstrated,theformalismgivestheoret- icallypossiblevaluesoftheconfigurationalentropyinallcon- sidered limits. Being an associate-type model, the formalism allows to set the composition of maximum ordering for each sub-systemofamulticomponentsystemindividually.Thecor- rectedGibbsfreeenergyequationofthequasichemicalmodel isalso presented. 163