ebook img

Modified associate formalism without entropy paradox: Part II. Comparison with similar models PDF

0.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modified associate formalism without entropy paradox: Part II. Comparison with similar models

3 1 0 ModifiedAssociateFormalismwithoutEntropyParadox: 2 PartII. ComparisonwithSimilarModels n a ∗ J DmitryN. Saulov ,a, A. Y. Klimenkoa 5 aSchool of Engineering, The University ofQueensland, AUSTRALIA 1 ] r e hAbstract t oThemodifiedassociateformalismiscompared withsimilarmodels, suchastheclassicalassociatemodel, theassociatespeciesmodel andthe .modified quasichemical model. Advantages of the modifiedassociate formalismaredemonstrated. t a m Key words: Thermodynamic modeling (D),Entropy (C) - d n o c1. Introduction – dependenceofcoordinationnumbersofthesolutioncompo- [ nentsonthe mole numbersofdifferentpairsthatallow one 1 In this paperwe compare the modified associate formalism tosetthecompositionofmaximumorderingsoastocomply v(MAF) proposed in the first paper[1] with the classical asso- withtheexperimentaldataforeachbinarysystem individu- 5ciatemodel(CAM)describedbyPrigogineandDefay[2]and ally. 1theassociatespeciesmodel(ASM)describedbyBesmannand We refer to the second version of the modified quasichemical 2 Spear [3]. Where it is possible, we compare MAF with the modelasMQM(2000). 3 .classicalquasichemicalmodel(CQM)ofFowlerandGuggen- 1 heim [4]. We also compare MAF with two modifications of 0 2. ConfigurationalEntropyofMixing inBinarySolutions 3CQM. ThefirstmodificationsuggestedbyPeltonandBlander 1[5] include: :– selection of the coordination numbers that allow one to set In this section, we compare the molar configurational en- v i thecompositionofmaximumorderingsoastocomplywith tropiesofmixinggivenbythesolutionmodelsmentionedabove X the experimentaldata; with theoretical boundaries for the configurational entropy of r– anempiricalexpansionofthemolarGibbsenergyofthequa- mixing.Theseboundariesarediscussedimmediatelybelow. a sichemicalreactionaspolynomialsintermsofcoordination Theconfigurationalentropyofmixingisameasureofdisor- equivalent mole fractions of solution components,which is der and has its maximum value for an ideal solution which is usedforfittingavailableexperimentaldata. completely disordered.For any solid or liquid solution A−B, The first version of the modified quasichemical model is re- the configurational entropy of mixing can not exceed that of ferred to as MQM(1986)in the presentstudy. Furthermodifi- idealsolution.Ontheotherhand,whenvacanciesarenottaken cationsofthequasichemicalmodelintroducedbyPeltonetal. into account (which is the case in all considered models), the [6] are: configurationalentropyofmixingcannotbenegative.Theval- – expansion of the Gibbs energy of the quasichemical reac- uesofmolarconfigurationalentropyofmixingwhichareout- tion as polynomials in pair fractions (instead of equivalent sideofthese boundariesareparadoxical. molefractionsofsolutioncomponents),whichprovidesad- For each model, we consider the following three limiting vantagesin data-fitting; cases. (i) ThecaseofidealsolutionofA-particlesandB-particles. In this case, the Gibbs free energy changes on forming associatesthatconsistofbothA-particlesandB-particles. ∗ Corresponding author: School ofEngineering, The University of Queens- The configurationalentropy of mixing should reduce to land,St.Lucia,QLD4072,Australia. Phone:(07)3365-3677Fax:(07)3365- thatofthe idealsolutionmodel. 3670 Emailaddress:[email protected] (Dmitry N. Saulov). (ii) ThecaseofimmisciblecomponentsAandB.Inthiscase, ArticlepublishedinJournalofAlloysandCompounds473(12)(2009)157–162 the configurational entropy of mixing should equals to 0.9 zero. 0.8 (iii) The case of the highly ordered solution A−B. In this case,theGibbsfreeenergychangeonformingoftheas- 0.7 sociates of a particular composition and of a particular R 0.6 spacial arrangement of particles approaches −¥ . If the / quasichemecal model is considered, the Gibbs free en- onf 0.5 c ergychangeon forming (A−B)-bondsapproaches−¥ . s 0.4 The configurational entropy of mixing should be equal to zeroatthe compositionofmaximumordering. 0.3 0.2 2.1. ClassicalAssociateModel 0.1 Consider a solution of x moles of the component A and A 0 xtiBon=al1e−ntxroApmyoolfesmoixfitnhgescompgoivneenntbBy.tTheheclmasosliacralcoanssfiogcuiarate- 0A 0.2 0.4 xB 0.6 0.8 B1 conf model[2]is expressedas A B-associates only A2 B-associates and Theoretical 2 AB-associates range 2 (cid:229) s =−R(n ln(x )+n ln(x )+ n ln(x )). conf A1 A1 B1 B1 AiBj AiBj Fig.1.Molarconfigurationalentropyofmixinggivenbytheclassicalassociate i,j≥1 model inthe limit ofideal solution ofA-particles and B-particles. (1) Here, n , n and n are the mole numbers (in one mole 0.7 A1 B1 AiBj of the solution A−B), while x , x and x are the mo- A1 B1 AiBj larfractionsof A -monoparticles,B -monoparticlesand AB - 0.6 1 1 i j associates, respectively; R is the universal gas constant. Note that compositions of associates and sizes of associates (i+ j) R 0.5 are determined by a modeller. The equilibrium values of the / mole numbers are determined by minimisation of the Gibbs onf 0.4 c s free energy of the solution subject to the mass balance and nonnegativityconstraints(see,forexample,themonographby 0.3 PrigogineandDefay[2]formoredetails). NowconsiderthelimitwhentheGibbsfreeenergychanges 0.2 on forming the associates equal to zero. As pointed out by Lu¨cketal.[7],theclassicalassociatemodelgivesparadoxical 0.1 values of the molar configurational entropy of mixing, which arelargerthanthosegivenbytheidealsolutionmodel.Fig. 1, 0 for example, shows the configurational entropy curves given 0A 0.2 0.4 xB 0.6 0.8 B1 by the classical associate model where only A B-associates 2 Theoretical CAM areconsidered(solidline)andwhere A2B-associatesandAB2- range associatesareconsidered(dashedline). Fig.2.Molarconfigurationalentropyofmixinggivenbytheclassicalassociate As shown in the figure, the curves are outside of the the- model inthe limit ofthe highly ordered solution. oretically possible range. Note also that the entropy curve is notsymmetricwithrespecttoverticallinewithx =1/2when equalstozeroatthecompositionofmaximumordering,since B onlyA2B-associatesareconsidered.Toobtainasymmetricen- differentspatial arrangementsof particles in an A2B-associate tropy curve (which is expected in the limit of ideal solution) arenotconsideredintheclassical associatemodel. oneshouldconsiderboth A B-associatesandAB -associates. 2 2 Consider the limit when the Gibbs free energy changes on 2.2. AssociateSpeciesModel formingallassociatesapproach+¥ .Inthiscase,noassociates formandtheconfigurationalentropyofmixingequalstothatof Accordingtotheassociatespeciesmodel[3],theconfigura- theidealsolutionmodel.Intheory,however,theconfigurational tionalentropyof mixingof x molesof the componentA and entropyofmixingshouldbe zeroforany x . A B x =1−x molesof thecomponentBis givenby Nowconsiderthelimitofhighlyorderedsolutionandassume B A that the Gibbs free energy change of forming A2B-associates R (cid:229) approaches −¥ . The entropy curve given by the classical as- sconf=−q nAa·qBb·qln(xAa·qBb·q) . (2) sociatemodelinthiscaseisshowninFig.2.Asshowninthis a+b=1 ! figure,theentireentropycurveiswithinthetheoreticallypossi- Here, q is the size of species (the number of particles per an blerange.Notealsothattheconfigurationalentropyofmixing associate specie); n are the mole numbers and x Aa·qBb·q Aa·qBb·q 158 1 .4 0.7 1 .2 0.6 R 1 .0 R 0.5 / / onf 0.8 onf 0.4 c c s s 0.6 0.3 0.4 0.2 0.2 0.1 0 0 0 0.2 0.4 x 0.6 0.8 1 0 0.2 0.4 x 0.6 0.8 1 A B B A B B q= 1 q= 2 q= 3 Theoretical q= 1 q= 2 q= 3 Theoretical range range Fig.3.Molarconfigurationalentropyofmixinggivenbytheassociatespecies Fig.4.Molarconfigurationalentropyofmixinggivenbytheassociatespecies modelwiththespeciesAq,Bq,A2q/3Bq/3 andAq/3B2q/3 inthelimitofideal model inthe limit ofimmiscible components. solution. 0.7 0.6 are the molar fractions of the Aa·qBb·q-species. Similar to the classicalassociatemodel,thesizeandcompositionsofspecies R 0.5 aredeterminedbya modeller. / Consider the limit of ideal solution, assuming that the so- onf 0.4 c lution consists of the associate species A , B , A B and s q q 2q/3 q/3 A B . The Fig. 3 shows the entropy curves given by the q/3 2q/3 0.3 associatespeciesmodelforq=1,q=2andq=3.Incontrast to the classical associate model, one can adjust the configura- 0.2 tionalentropyofmixing,usingtheadditionalparameterq.For thisparticularsetofspecies,theselectionofq=2resultinthe 0.1 entropycurvewhichisclosed(thoughlocatedoutsidethetheo- reticallypossiblerange)totheentropycurvegivenbytheideal 0 solutionmodel.AsshowninFig. 3,theselectionq=1results 0 0.2 0.4 x 0.6 0.8 1 A B B in substantial overestimationof the configurationalentropyof mixing,whiletheselectionq=3givesunderestimatedvalues. q= 1 q= 2 q= 3 Theoretical range Consider the limit of immiscible components, that is, the Gibbs free energy changes on forming the species A2q/3Bq/3 Fig.5.Molarconfigurationalentropyofmixinggivenbytheassociatespecies and A B approach +¥ . The entropycurvesgiven by the model inthe limit ofhighly ordered solution. q/3 2q/3 associate species model in this case are shown in Fig. 4. As 2.3. ModifiedAssociateFormalism shown in this figure, the associate species modeloverestimate theconfigurationalentropyofmixinginthelimitofimmiscible components.However,theentropycurvetendstotheoretically In the modified associate formalism the configurationalen- expectedone(s ≡0),whenqincreases. tropyofmixingis givenby(seeEq.(44)in Ref.[1]) conf Now consider the limit of highly ordered solution. Assume alsothattheGibbsfreeenergychangeonformingtheassociate s =−R (cid:229) Jk1(cid:229),...,krn[j] ln x[kj1],...,kr , (3) scpuervceiegsivAe2nq/b3yBqth/3eaaspsporcoiaactehespse−ci¥es.mFoigd.e5linshthoiwsscatshee.Aenstrsoepeny conf k1,...,kr∈Sm j=1 k1,...,kr dk[1j],...,kr   fromFig.5,theentropycurvewith q=3isentirelylocatedin where all the notationshave the same meaning as in Ref. [1]. the theoretically possible range. If q=2, however, small part In contrast to previous modifications of the associate model, of the entropy curve (approximately, for 0 <x <0.075) is the compositions of associates that have to be considered are B located outside the theoretically possible range. The selection definedbythesize ofassociates. q=1 results in paradoxical values of configurationalentropy Considerthe limit of ideal solution. In this limit, the Gibbs approximatelyfor0<x <0.25and0.6<x <1. free energies of the reactions of forming different associates B B 159 0.7 0.7 0.6 0.6 R 0.5 R 0.5 / / onf 0.4 onf 0.4 c c s s 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 0.2 0.4 x 0.6 0.8 1 0 0.2 0.4 x 0.6 0.8 1 A B B A B B m=3 m= 6 Theoretical m=3 m= 6 Theoretical range range Fig.6.Molarconfigurational entropy ofmixinggiven bythemodifiedasso- Fig.7.Molarconfigurational entropy ofmixinggivenbythemodifiedasso- ciate formalism in the limit of immiscible components. ciate formalism in the limit ofhighly ordered solution. equal to zero. As demonstrated in the previous paper [1], the equivalent fractions y and y are defined as (see Eq. (6) in A B configurationalentropy of mixing correctly reduces to that of Ref.[6]) theidealsolutionmodelforarbitrarysize ofassociates. Now consider the limit of immiscible components, where yA =ZAnA/(ZAnA+ZBnB) (6) the Gibbs free energies of the associate that consist of both y =Z n /(Z n +Z n ), A-particles and B-particles approach +¥ . In this case, Eq. (3) B B B A A B B reducesto whereZ andZ arethecoordinationnumbersofthesolution A B R components A and B, respectively. As demonstrated by Pel- s =− (x ln(x )+n ln(x )). (4) conf m A A B B tonandBlander[5]forconstantcoordinationnumbersandby Pelton et al. [6] for variable coordination numbers, the modi- wheremisthesizeofassociates.Theentropycurvesform=3 fied quasichemical model correctly reduces to the ideal solu- and m=6 are shown in Fig. 6. As seen from this figure, the tion model, when the Gibbs free energy change on forming entropycurvesareentirelylocatedinthetheoreticallypossible (A−B)-pairsD g equalstozero. range and tendsto the theoreticallyexpectedcurve(s ≡0) AB conf IntheframeworkofMQM(1986)(themodifiedquasichemi- with increasingthesize ofassociates. calmodelafterPeltonandBlander[5]),thecoordinationnum- Consideringthelimitofhighlyorderedsolution,weassume bersareassumedtobeconstantandareselectedtosetthecom- also thatthe Gibbsfreeenergyofassociate with the composi- positionofmaximumorderingx∗ andtosatisfytheconditions tionA2Bandwithaparticularspatialarrangementofparticles s =0atx∗ whenD g →−¥ B.Thisresultsin(seealsoEqs. approaches−¥ .Theentropycurvesform=3andm=6given conf B AB (30)and(31)inRef. [5]) bythemodifiedassociateformalisminthiscaseispresentedin Fig. 7. In this case, the curves are also entirely located in the Z =−(x∗ln(x∗)+(1−x∗)ln(1−x∗))/(x∗ln(2)) theoreticallypossiblerange. B B B B B B (7) Z =Z x∗/(1−x∗). A B B B 2.4. ModifiedQuasichemicalModel(1986) Similartotheexamplesdescribedabove,consideronemole ofbinarysolutionA−Bandassumethatx∗ =1/3.Inthiscase, B In the modified quasichemical model, the molar configura- Z =2.75489 and Z =1.37744. In the limit of immiscible B A tionalentropyofmixingisgivenby(see Eq.(10)in Ref.[6]) components,D g →+¥ .Themolarconfigurationalentropyof AB mixinggivenbythecurvesgivenbyMQM(1986)inthiscaseis sconf=−R(xAln(xA)+xBln(xB)) presentedinFig.8.Asshowninthisfigure,MQM(1986)gives −R n ln xAA +n ln xBB +n ln xAB . paradoxical, negative values of the configurational entropy of (cid:20) AA (cid:18) y2A (cid:19) BB (cid:18) y2B (cid:19) AB (cid:18)2yAyB(cid:19)(cid:21) mixingfor0<xB<1/3. (5) Now consider the limit of highly ordered liquid, that Here, x and x are the molar fractions of the components A is, D g → −¥ . Fig. 9 shows the entropy curve given by A B AB and B; n and x (i,j=A,B) are the mole number and the MQM(1986) in this case. As seen from Fig. 9, the curve is ij ij molar fraction of (i− j)-pairs, respecively. The coordination- entirelylocatedinthe theoreticallypossiblerange. 160 0.7 assuggestedbyPeltonetal. [6],namely: 0.6 ZA =ZB =ZB =6; ZA =3. (9) AA BB BA AB 0.5 Fig. 10 demonstrates that MQM(2000) gives paradoxical val- R uesoftheconfigurationalentropyofmixingfortheentirecom- / 0.4 positionalrangein thelimitofofimmisciblecomponents. nf o c s 0.3 1.0 0.2 0.5 0.1 R 0 / nf 0 o c -0.1 s 0 0.2 0.4 x 0.6 0.8 1 A B B -0.5 Theoretical MQM(1986) range Fig. 8. Molar configurational entropy of mixing given by the modified qua- -1.0 sichemical model (1986) in the limit ofimmiscible components. 0.7 -1.5 0 0.2 0.4 x 0.6 0.8 1 0.6 A B B Theoretical MQM(2000) range R 0.5 Fig. 10. Molar configurational entropy of mixing given by the modified / onf 0.4 quasichemical model (2000) inthe limit ofimmiscible components. c s Now consider the limit of highly ordered solution, that is, 0.3 D g → −¥ . The entropy curve given by MQM(2000) in AB this case is presented in Fig. 11. As seen form this figure, 0.2 MQM(2000) gives negative values of the configurational en- tropyofmixinginthevicinityofthecompositionofmaximum 0.1 ordering. 0 0.8 0 0.2 0.4 x 0.6 0.8 1 A B B 0.6 Theoretical MQM(1986) range 0.4 Fig. 9. Molar configurational entropy of mixing given by the modified qua- R sichemical model (1986) in the limit ofhighly ordered solution. / 0.2 nf o c 2.5. ModifiedQuasichemicalModel(2000) s 0 -0.2 IntheframeworkofMQM(2000)(themodifiedquasichem- icalmodelafterPelton etal.[6]),the configurationalnumbers -0.4 areassumedtobecomposition-dependant.Thefollowingequa- tions for the coordination numbers have been suggested (see -0.6 Eqs.(19)and(20)inRef. [6]): -0.8 1 1 2n 1 n = AA + AB 0 0.2 0.4 x 0.6 0.8 1 ZA ZAAA2nAA+nAB ZAAB2nAA+nAB A B B (8) Theoretical 1 1 2nBB 1 nAB MQM(2000) range = + . Z ZB 2n +n ZB 2n +n B BB BB AB BA BB AB Fig. 11. Molar configurational entropy of mixing given by the modified Considerthelimitofimmisciblecomponents(D g →+¥ ), quasichemical model (2000) inthe limit ofhighly ordered solution. AB assumingthatthe constantsZA , ZB , ZA andZB are chosen AA BB AB BA 161 2.6. ClassicalQuasichemicalModel Now consider the solution discussed in in Ref. [1] in the frameworkoftheassociatespeciesmodel.Thatis,weconsider Itisimportanttonotethattheclassicalquasichemicalmodel the associate species Aq, Bq, A2q/3Bq/3 and Aq/3B2q/3 of the ofFowlerandGuggenheim[4](withZA=ZB=1/2)correctly size q.Inthiscase,chemicalactivityaB isgivenby reducestotheidealsolutionmodelwhenD gAB=0.Inthelimit a =x1/q , (10) ofimmisciblecomponents,theconfigurationalentropyofmix- B Bq ing given by this model correctly reduces to the theoretically where x is the molar fraction of the species B . Eq. (28) in Bq q expectedcurve(s ≡0).Inallothercases,theclassicalqua- Ref.[1] reads conf smicixhienmgicwahlimchodaerelgwivitehsinvatlhueesthoefothreeticcoanllfiygpuorastsiiobnlealreanntgreo.pTyhoef daB = 1x1/q−1 dxA −1 . (11) dx q Bq dx applicabilityoftheclassicalquasichemicalmodel,however,is A (cid:18) Bq(cid:19) limitedtothosechemicalsolutions,inwhichmaximumorder- Using the technique described in Section 6 of the previous ingoccursatthecompositionx =1/2. paper[1],oneverifiesthat B dx 4 1 A =−1− e t− e t2 2.7. Summary 2 1 dx 9 9 The classical associate model results in paradoxically large Bq +29(e 2+e t12t)+11+e +32e 22te+t13e 1t2 (12) values of the configurational entropy in the limit of ideal so- (cid:0)3 2 3 1 (cid:1) lution,whilegivingtheoreticallypossiblevaluesoftheconfig- Here,t≡ x /x 1/3,e ≡(cid:0)exp −D g (cid:1) /RT ande ≡ urationalentropy of mixing in othertwo limits. The associate Aq Bq 1 A2q/3Bq/3 2 species modelcan give paradoxicallylarge values in the limit exp −D g(cid:0)A B /(cid:1)RT , while D (cid:16)gA B and D gA(cid:17) B are q/3 2q/3 2q/3 q/3 q/3 2q/3 ofidealsolutionandinthe limitofhighlyorderedsolution. them(cid:16)olarGibbsfreeen(cid:17)ergiesofformationofA2q/3Bq/3-species The modified quasichemical model after Pelton and Blan- andA B -species,respecively. q/3 2q/3 der [5] results in paradoxically small, negative values of the SubstitutingEq.(12)intoEq.(11)andtakingthelimitwhen configurationalentropyinthelimitofimmisciblecomponents. xA→0,oneverifiesthat ThemodifiedquasichemicalmodelafterPeltonetal.[6]gives 3 paradoxicallysmall,negativevaluesinthelimitofimmiscible lim(daB/dxA)=− . (13) xA→0 q componentsandin thelimitofhighlyorderedsolution. Thisdemonstratesthat,foranyfinite valuesof D g and Themodifiedassociateformalism[1]andtheclassicalqua- A2q/3Bq/3 D g ,chemicalactivitya givenbytheassociatespecies sichemical model [4] give theoretically possible values of the Aq/3B2q/3 B modelvariesas(1−x )onlywhenq=3.Inthelimitofhighly configurational entropy in all considered limits. The classical A orderedsolution(D g →−¥ ),a variesas(1− 3 x )in quasichemicalmodelalsocorrectlyreducestothetheoretically A2q/3Bq/3 B 2q A thevicinityofx =0. expectedcurveinthelimitofimmisciblecomponents.Theap- A It is also important to note that, in the framework of the plicability of the classical quasichemical model, however, is associate species model, one can consider the species A , B limited. q q andA B only,sincethesetofspeciestobeconsideredis 2q/3 q/3 determinedby a modeller. Formally setting D g =+¥ , A B 3. Dilute Solutions q/3 2q/3 Eq.(12)reducesto Pelton et al. [6] consideredbinarysolution, in which maxi- dxA =−1−1e t2+2e 1t 1+13e 1t2 . (14) mumorderingoccursatthe composition xB=1/3inthelimit dxBq 9 1 9 t(cid:0)2+23e 1t (cid:1) ofhighlyorderedsolution(Gibbsfreeenergychangeonform- SubstitutionofEq.(14)intoEq.(11)(cid:0)andtaking(cid:1)thelimitwhen ing(A−B)-pairsapproaches−¥ ).Itwasdemonstratedthat,in x →0 gives A theframeworkofthemodifiedquasichemicalmodel,chemical 3 activity a of the componentB in the varies in the vicinity of lim(daB/dxA)=− . (15) B xA→0 2q x =0as (1−x )eveninthislimitingcase. A A In this case, a varies in the vicinity of x =0 as (1− 3 x ) Similar solution has also been considered in Ref. [1] in the B A 2q A foranyvalueofD g . framework of the modified associate formalism. As demon- A2q/3Bq/3 The examples presented above indicate that the set of as- strated, chemical activity a varies as (1−x ) only for finite B A values of D g and D g . Here, D g and D g are the mo- sociate species and the size of species should be carefully se- 2,1 1,2 2,1 1,2 lected, when the associate species model is applied for dilute lar Gibbs free energy changes on forming A B-associates and 2 solutions. AB -associates, respectively.Inthelimitofhighlyorderedso- 2 lution (D g →−¥ ), a varies as (1−x /2). Note also that 2,1 B A the interval in the vicinity of x =0, in which a can be ap- 4. Settingthe CompositionofMaximumOrdering A B proximated as (1−x ), decreases with the decrease in D g . A 2,1 Thisshouldbetakenintoconsideration,whenthemodifiedas- Modelling of multicomponentsystems requires a provision sociate formalismisusedformodellingdilute solutions. for setting the composition of maximum ordering so as to 162 comply with the experimental data for each sub-system (bi- Acknowledgment nary,ternary,quaternaryandsoon)individually.Associate-type modelsallow to dothis in a straightforwardway by including ThepresentworkhasbeensupportedbytheAustralianRe- ineachsub-systemtheassociates,whichcompositioncoincides searchCouncil. with that of maximum ordering in a particular sub-system. In thecaseoftheclassicalassociatemodelortheassociatespecies References model,amodellercanarbitrarilyincludetherequiredassociates or the associate species. In the case of the modified associate [1] D. N. Saulov, I. G. Vladimirov, A. Y. Klimenko, Modi- formalism,inwhichthecompositionsofassociatesaredefined fied associate formalism without entropy paradox Part I: bytheirsize,oneshouldselecttheadequatelylargesizeofas- Model Description, Submitted to Journal of Alloys and sociatestoincludetherequiredcompositions. Compounds. Incontrasttoassociate-typemodels,therearenoprovisions [2] I.Prigogine,R.Defay,ChemicalThermodynamics,Long- for setting the composition of maximum ordering for each mans,GreenandCo., 1954. ternary, quaternary and so on sub-systems individually nei- [3] T. M. Besmann, K. E. Spear, Thermochemical modeling therintheframeworkofMQM(1986)norintheframeworkof ofoxideglasses,JournaloftheAmericanCeramicSociety MQM(2000). Furthermore, the composition of maximum or- 85(12)(2002)2887–2894. deringcannotbesetindependentlyevenforbinarysub-systems [4] R. H. Fowler, E. A. Guggenheim, Statistical Thermody- intheframeworkofMQM(1986).Toovercomethisdisadvan- namics,CambridgeUniversityPress, 1939. tage forbinary sub-systems, Pelton et al. [6] suggested to use [5] A. D. Pelton, M. Blander,Thermodynamicanalysisof or- variable coordination numbers given by Eqs. (8). This modi- dered liquid solutions by a modified quasichemical ap- fication,however,leadstomathematicalandthermodynamical proach- application to silicate slags, MetallurgicalTrans- inconsistencies of MQM(2000).These inconsistencies are de- actionsB:ProcessMetallurgy17B (1986)805–815. scribedimmediatelybelow. [6] A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin, Consider the case, in which the coordination numbers are givenbyEqs.(8)andtheconstantsZA ,ZB , ZA andZB are Y. Dessureault,The modifiedquasichemicalmodelI - Bi- AA BB AB BA narysolution,MetallurgicalandMaterialsTransactionsB: givenbyEqs.(9).Firstly,asdemonstratedinRef.[8],thetotal ProcessMetallurgyandMaterialsProcessingScience31B mole number of pairs n depends on the extent of the qua- tp (2000)651–659. sichemical reaction (Eq. (1) in Ref. [6]). More precisely, n tp [7] R.Lu¨ck,U.Gerling,B.Predel,Anentropyparadoxofthe decreasesby1/2molepereachmoleof(A−B)pairsformed. association model, Zeitschrift fur Metallkunde 80 (1989) Thisresultcontradictstotheequationofthequasichemicalre- 270–275. action(seeEq.(1)inRef.[6]),whichunderliesthequasichemi- [8] D.Saulov,Shortcomingsoftherecentmodificationsofthe calmodel.AccordingtoEq.(1)inRef.[6],n doesnotchange tp quasichemical solution model, Calphad - Computer Cou- inthequasichemicalreaction.Secondly,whenthecoordination pling of Phase Diagramsand Thermochemistry31 (2007) numbersZ andZ varywithn ,theexpressionfortheGibbs A B AB 390–395. free energy of the solution given by Eq. (9) in Ref. [6]) is in error. Using Eqs. (1-3,19,20)in Ref. [6], one verifies that the correctexpressionin thiscaseis Z Z n G= A n g◦+ B n g◦−TD Sconfig+ ABD g . (16) ZA A A ZB B B 2 AB AA BB Here,allthenotationshavethe samemeaningasin Ref.[6]. 5. Conclusions The modified associate formalism has been compared with similarmodels.Asdemonstrated,theformalismgivestheoret- icallypossiblevaluesoftheconfigurationalentropyinallcon- sidered limits. Being an associate-type model, the formalism allows to set the composition of maximum ordering for each sub-systemofamulticomponentsystemindividually.Thecor- rectedGibbsfreeenergyequationofthequasichemicalmodel isalso presented. 163

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.