Springer Texts in Statistics Series Editors: G. Casella S. Fienberg I. Olkin Forfurther volumes: http://www.springer.com/series/417 Modern Mathematical Statistics with Applications Second Edition Jay L. Devore CaliforniaPolytechnicStateUniversity Kenneth N. Berk IllinoisStateUniversity JayL.Devore KennethN.Berk CaliforniaPolytechnicStateUniversity IllinoisStateUniversity StatisticsDepartment DepartmentofMathematics SanLuisObispoCalifornia NormalIllinois USA USA [email protected] [email protected] ISBN978-1-4614-0390-6 e-ISBN978-1-4614-0391-3 DOI10.1007/978-1-4614-0391-3 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2011936004 #SpringerScience+BusinessMedia,LLC2012 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrittenpermissionofthepublisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyarenotidentifiedassuch, isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjecttoproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To my wife Carol whosecontinuingsupportofmywritingefforts overtheyearshasmadeallthedifference. To my wife Laura who,asasuccessfulauthor,ismymentorandrolemodel. About the Authors Jay L. Devore Jay Devore received a B.S. in Engineering Science from the University of California,Berkeley,andaPh.D.inStatisticsfromStanfordUniversity.Heprevi- ouslytaughtattheUniversityofFloridaandOberlinCollege,andhashadvisiting positions at Stanford, Harvard, the University of Washington, New York Univer- sity, and Columbia. He has been at California Polytechnic State University, San Luis Obispo, since 1977, where he was chair of the Department of Statistics for7yearsandrecentlyachievedtheexaltedstatusofProfessorEmeritus. Jayhaspreviouslyauthoredorcoauthoredfiveotherbooks,includingProbabil- ity and Statistics for Engineering and the Sciences, which won a McGuffey Longevity Award from the Text and Academic Authors Association for demon- strated excellence over time. He is a Fellow of the American Statistical Associa- tion, has been an associate editor for both the Journal of the American Statistical AssociationandTheAmericanStatistician,andreceivedtheDistinguishedTeach- ing Award from Cal Poly in 1991. His recreational interests include reading, playingtennis,traveling,andcookingandeatinggoodfood. Kenneth N. Berk KenBerkhasaB.S.inPhysicsfromCarnegieTech(nowCarnegieMellon)anda Ph.D.inMathematicsfromtheUniversityofMinnesota.HeisProfessorEmeritus ofMathematicsatIllinoisStateUniversityandaFellowoftheAmericanStatistical Association. He founded the Software Reviews section of The American Statisti- cianandediteditfor6years.Heservedassecretary/treasurer,programchair,and chairoftheStatisticalComputingSectionoftheAmericanStatisticalAssociation, and he twice co-chaired the Interface Symposium, the main annual meeting in statisticalcomputing.Hispublishedworkincludespapersontimeseries,statistical computing, regression analysis, and statistical graphics, as well as the book Data AnalysiswithMicrosoftExcel(withPatrickCarey). vi Contents Preface x 1 Overview and Descriptive Statistics 1 Introduction 1 1.1 PopulationsandSamples 2 1.2 PictorialandTabularMethodsinDescriptiveStatistics 9 1.3 MeasuresofLocation 24 1.4 MeasuresofVariability 32 2 Probability 50 Introduction 50 2.1 SampleSpacesandEvents 51 2.2 Axioms,Interpretations,andPropertiesofProbability 56 2.3 CountingTechniques 66 2.4 ConditionalProbability 74 2.5 Independence 84 3 Discrete Random Variables and Probability Distributions 96 Introduction 96 3.1 RandomVariables 97 3.2 ProbabilityDistributionsforDiscreteRandomVariables 101 3.3 ExpectedValuesofDiscreteRandomVariables 112 3.4 MomentsandMomentGeneratingFunctions 121 3.5 TheBinomialProbabilityDistribution 128 3.6 HypergeometricandNegativeBinomialDistributions 138 3.7 ThePoissonProbabilityDistribution 146 4 Continuous Random Variables and Probability Distributions 158 Introduction 158 4.1 ProbabilityDensityFunctionsandCumulativeDistributionFunctions 159 4.2 ExpectedValuesandMomentGeneratingFunctions 171 4.3 TheNormalDistribution 179 4.4 TheGammaDistributionandItsRelatives 194 4.5 OtherContinuousDistributions 202 4.6 ProbabilityPlots 210 4.7 TransformationsofaRandomVariable 220 5 Joint Probability Distributions 232 Introduction 232 5.1 JointlyDistributedRandomVariables 233 5.2 ExpectedValues,Covariance,andCorrelation 245 5.3 ConditionalDistributions 253 5.4 TransformationsofRandomVariables 265 5.5 OrderStatistics 271 vii viii Contents 6 Statistics and Sampling Distributions 284 Introduction 284 6.1 StatisticsandTheirDistributions 285 6.2 TheDistributionoftheSampleMean 296 6.3 TheMean,Variance,andMGFforSeveralVariables 306 6.4 DistributionsBasedonaNormalRandomSample 315 Appendix: ProofoftheCentralLimitTheorem 329 7 Point Estimation 331 Introduction 331 7.1 GeneralConceptsandCriteria 332 7.2 MethodsofPointEstimation 350 7.3 Sufficiency 361 7.4 InformationandEfficiency 371 8 Statistical Intervals Based on a Single Sample 382 Introduction 382 8.1 BasicPropertiesofConfidenceIntervals 383 8.2 Large-SampleConfidenceIntervalsforaPopulationMeanandProportion 391 8.3 IntervalsBasedonaNormalPopulationDistribution 401 8.4 ConfidenceIntervalsfortheVarianceandStandardDeviationofaNormal Population 409 8.5 BootstrapConfidenceIntervals 411 9 Tests of Hypotheses Based on a Single Sample 425 Introduction 425 9.1 HypothesesandTestProcedures 426 9.2 TestsAboutaPopulationMean 436 9.3 TestsConcerningaPopulationProportion 450 9.4 P-Values 456 9.5 SomeCommentsonSelectingaTestProcedure 467 10 Inferences Based on Two Samples 484 Introduction 484 10.1 zTestsandConfidenceIntervalsforaDifferenceBetweenTwo PopulationMeans 485 10.2 TheTwo-SampletTestandConfidenceInterval 499 10.3 AnalysisofPairedData 509 10.4 InferencesAboutTwoPopulationProportions 519 10.5 InferencesAboutTwoPopulationVariances 527 10.6 ComparisonsUsingtheBootstrapandPermutationMethods 532 11 The Analysis of Variance 552 Introduction 552 11.1 Single-FactorANOVA 553 11.2 MultipleComparisonsinANOVA 564 11.3 MoreonSingle-FactorANOVA 572 11.4 Two-FactorANOVAwithKij ¼ 1 582 11.5 Two-FactorANOVAwithKij > 1 597 12 Regression and Correlation 613 Introduction 613 12.1 TheSimpleLinearandLogisticRegressionModels 614 12.2 EstimatingModelParameters 624 12.3 InferencesAbouttheRegressionCoefficientb 640 1 Contents ix 12.4 InferencesConcerningmY(cid:2)x(cid:3) andthePredictionofFutureY Values 654 12.5 Correlation 662 12.6 AssessingModelAdequacy 674 12.7 MultipleRegressionAnalysis 682 12.8 RegressionwithMatrices 705 13 Goodness-of-Fit Tests and Categorical Data Analysis 723 Introduction 723 13.1 Goodness-of-FitTestsWhenCategoryProbabilities AreCompletelySpecified 724 13.2 Goodness-of-FitTestsforCompositeHypotheses 732 13.3 Two-WayContingencyTables 744 14 Alternative Approaches to Inference 758 Introduction 758 14.1 TheWilcoxonSigned-RankTest 759 14.2 TheWilcoxonRank-SumTest 766 14.3 Distribution-FreeConfidenceIntervals 771 14.4 BayesianMethods 776 Appendix Tables 787 A.1 CumulativeBinomialProbabilities 788 A.2 CumulativePoissonProbabilities 790 A.3 StandardNormalCurveAreas 792 A.4 TheIncompleteGammaFunction 794 A.5 CriticalValuesfortDistributions 795 A.6 CriticalValuesforChi-SquaredDistributions 796 A.7 tCurveTailAreas 797 A.8 CriticalValuesforFDistributions 799 A.9 CriticalValuesforStudentizedRangeDistributions 805 A.10 Chi-SquaredCurveTailAreas 806 A.11 CriticalValuesfortheRyan–JoinerTestofNormality 808 A.12 CriticalValuesfortheWilcoxonSigned-RankTest 809 A.13 CriticalValuesfortheWilcoxonRank-SumTest 810 A.14 CriticalValuesfortheWilcoxonSigned-RankInterval 811 A.15 CriticalValuesfortheWilcoxonRank-SumInterval 812 A.16 bCurvesfortTests 813 Answers to Odd-Numbered Exercises 814 Index 835