Table Of ContentSpringer Texts
in Statistics
Series Editors:
G. Casella
S. Fienberg
I. Olkin
Forfurther volumes:
http://www.springer.com/series/417
Modern
Mathematical
Statistics with
Applications
Second Edition
Jay L. Devore
CaliforniaPolytechnicStateUniversity
Kenneth N. Berk
IllinoisStateUniversity
JayL.Devore KennethN.Berk
CaliforniaPolytechnicStateUniversity IllinoisStateUniversity
StatisticsDepartment DepartmentofMathematics
SanLuisObispoCalifornia NormalIllinois
USA USA
jdevore@calpoly.edu kberk@ilstu.edu
ISBN978-1-4614-0390-6 e-ISBN978-1-4614-0391-3
DOI10.1007/978-1-4614-0391-3
SpringerNewYorkDordrechtHeidelbergLondon
LibraryofCongressControlNumber:2011936004
#SpringerScience+BusinessMedia,LLC2012
Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrittenpermissionofthepublisher
(Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.
Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyarenotidentifiedassuch,
isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjecttoproprietaryrights.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
To my wife Carol
whosecontinuingsupportofmywritingefforts
overtheyearshasmadeallthedifference.
To my wife Laura
who,asasuccessfulauthor,ismymentorandrolemodel.
About the Authors
Jay L. Devore
Jay Devore received a B.S. in Engineering Science from the University of
California,Berkeley,andaPh.D.inStatisticsfromStanfordUniversity.Heprevi-
ouslytaughtattheUniversityofFloridaandOberlinCollege,andhashadvisiting
positions at Stanford, Harvard, the University of Washington, New York Univer-
sity, and Columbia. He has been at California Polytechnic State University,
San Luis Obispo, since 1977, where he was chair of the Department of Statistics
for7yearsandrecentlyachievedtheexaltedstatusofProfessorEmeritus.
Jayhaspreviouslyauthoredorcoauthoredfiveotherbooks,includingProbabil-
ity and Statistics for Engineering and the Sciences, which won a McGuffey
Longevity Award from the Text and Academic Authors Association for demon-
strated excellence over time. He is a Fellow of the American Statistical Associa-
tion, has been an associate editor for both the Journal of the American Statistical
AssociationandTheAmericanStatistician,andreceivedtheDistinguishedTeach-
ing Award from Cal Poly in 1991. His recreational interests include reading,
playingtennis,traveling,andcookingandeatinggoodfood.
Kenneth N. Berk
KenBerkhasaB.S.inPhysicsfromCarnegieTech(nowCarnegieMellon)anda
Ph.D.inMathematicsfromtheUniversityofMinnesota.HeisProfessorEmeritus
ofMathematicsatIllinoisStateUniversityandaFellowoftheAmericanStatistical
Association. He founded the Software Reviews section of The American Statisti-
cianandediteditfor6years.Heservedassecretary/treasurer,programchair,and
chairoftheStatisticalComputingSectionoftheAmericanStatisticalAssociation,
and he twice co-chaired the Interface Symposium, the main annual meeting in
statisticalcomputing.Hispublishedworkincludespapersontimeseries,statistical
computing, regression analysis, and statistical graphics, as well as the book Data
AnalysiswithMicrosoftExcel(withPatrickCarey).
vi
Contents
Preface x
1 Overview and Descriptive Statistics 1
Introduction 1
1.1 PopulationsandSamples 2
1.2 PictorialandTabularMethodsinDescriptiveStatistics 9
1.3 MeasuresofLocation 24
1.4 MeasuresofVariability 32
2 Probability 50
Introduction 50
2.1 SampleSpacesandEvents 51
2.2 Axioms,Interpretations,andPropertiesofProbability 56
2.3 CountingTechniques 66
2.4 ConditionalProbability 74
2.5 Independence 84
3 Discrete Random Variables and Probability Distributions 96
Introduction 96
3.1 RandomVariables 97
3.2 ProbabilityDistributionsforDiscreteRandomVariables 101
3.3 ExpectedValuesofDiscreteRandomVariables 112
3.4 MomentsandMomentGeneratingFunctions 121
3.5 TheBinomialProbabilityDistribution 128
3.6 HypergeometricandNegativeBinomialDistributions 138
3.7 ThePoissonProbabilityDistribution 146
4 Continuous Random Variables and Probability Distributions 158
Introduction 158
4.1 ProbabilityDensityFunctionsandCumulativeDistributionFunctions 159
4.2 ExpectedValuesandMomentGeneratingFunctions 171
4.3 TheNormalDistribution 179
4.4 TheGammaDistributionandItsRelatives 194
4.5 OtherContinuousDistributions 202
4.6 ProbabilityPlots 210
4.7 TransformationsofaRandomVariable 220
5 Joint Probability Distributions 232
Introduction 232
5.1 JointlyDistributedRandomVariables 233
5.2 ExpectedValues,Covariance,andCorrelation 245
5.3 ConditionalDistributions 253
5.4 TransformationsofRandomVariables 265
5.5 OrderStatistics 271
vii
viii Contents
6 Statistics and Sampling Distributions 284
Introduction 284
6.1 StatisticsandTheirDistributions 285
6.2 TheDistributionoftheSampleMean 296
6.3 TheMean,Variance,andMGFforSeveralVariables 306
6.4 DistributionsBasedonaNormalRandomSample 315
Appendix: ProofoftheCentralLimitTheorem 329
7 Point Estimation 331
Introduction 331
7.1 GeneralConceptsandCriteria 332
7.2 MethodsofPointEstimation 350
7.3 Sufficiency 361
7.4 InformationandEfficiency 371
8 Statistical Intervals Based on a Single Sample 382
Introduction 382
8.1 BasicPropertiesofConfidenceIntervals 383
8.2 Large-SampleConfidenceIntervalsforaPopulationMeanandProportion 391
8.3 IntervalsBasedonaNormalPopulationDistribution 401
8.4 ConfidenceIntervalsfortheVarianceandStandardDeviationofaNormal
Population 409
8.5 BootstrapConfidenceIntervals 411
9 Tests of Hypotheses Based on a Single Sample 425
Introduction 425
9.1 HypothesesandTestProcedures 426
9.2 TestsAboutaPopulationMean 436
9.3 TestsConcerningaPopulationProportion 450
9.4 P-Values 456
9.5 SomeCommentsonSelectingaTestProcedure 467
10 Inferences Based on Two Samples 484
Introduction 484
10.1 zTestsandConfidenceIntervalsforaDifferenceBetweenTwo
PopulationMeans 485
10.2 TheTwo-SampletTestandConfidenceInterval 499
10.3 AnalysisofPairedData 509
10.4 InferencesAboutTwoPopulationProportions 519
10.5 InferencesAboutTwoPopulationVariances 527
10.6 ComparisonsUsingtheBootstrapandPermutationMethods 532
11 The Analysis of Variance 552
Introduction 552
11.1 Single-FactorANOVA 553
11.2 MultipleComparisonsinANOVA 564
11.3 MoreonSingle-FactorANOVA 572
11.4 Two-FactorANOVAwithKij ¼ 1 582
11.5 Two-FactorANOVAwithKij > 1 597
12 Regression and Correlation 613
Introduction 613
12.1 TheSimpleLinearandLogisticRegressionModels 614
12.2 EstimatingModelParameters 624
12.3 InferencesAbouttheRegressionCoefficientb 640
1
Contents ix
12.4 InferencesConcerningmY(cid:2)x(cid:3) andthePredictionofFutureY Values 654
12.5 Correlation 662
12.6 AssessingModelAdequacy 674
12.7 MultipleRegressionAnalysis 682
12.8 RegressionwithMatrices 705
13 Goodness-of-Fit Tests and Categorical Data Analysis 723
Introduction 723
13.1 Goodness-of-FitTestsWhenCategoryProbabilities
AreCompletelySpecified 724
13.2 Goodness-of-FitTestsforCompositeHypotheses 732
13.3 Two-WayContingencyTables 744
14 Alternative Approaches to Inference 758
Introduction 758
14.1 TheWilcoxonSigned-RankTest 759
14.2 TheWilcoxonRank-SumTest 766
14.3 Distribution-FreeConfidenceIntervals 771
14.4 BayesianMethods 776
Appendix Tables 787
A.1 CumulativeBinomialProbabilities 788
A.2 CumulativePoissonProbabilities 790
A.3 StandardNormalCurveAreas 792
A.4 TheIncompleteGammaFunction 794
A.5 CriticalValuesfortDistributions 795
A.6 CriticalValuesforChi-SquaredDistributions 796
A.7 tCurveTailAreas 797
A.8 CriticalValuesforFDistributions 799
A.9 CriticalValuesforStudentizedRangeDistributions 805
A.10 Chi-SquaredCurveTailAreas 806
A.11 CriticalValuesfortheRyan–JoinerTestofNormality 808
A.12 CriticalValuesfortheWilcoxonSigned-RankTest 809
A.13 CriticalValuesfortheWilcoxonRank-SumTest 810
A.14 CriticalValuesfortheWilcoxonSigned-RankInterval 811
A.15 CriticalValuesfortheWilcoxonRank-SumInterval 812
A.16 bCurvesfortTests 813
Answers to Odd-Numbered Exercises 814
Index 835