ebook img

Modern General Relativity: Black Holes, Gravitational Waves, and Cosmology (Instructor Res. n. 2 of 3, Lectures) PDF

1250 Pages·2019·21.179 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern General Relativity: Black Holes, Gravitational Waves, and Cosmology (Instructor Res. n. 2 of 3, Lectures)

Modern General Relativity Lecture Notes Mike Guidry This document summarizes the first edition of Modern General Relativity: Black Holes, Gravitational Waves, and Cosmology by Mike Guidry (Cam- bridge University Press, 2019) in a format suitable for presentation. Sources and references forthematerialcontained heremaybefound inthatbook. Contents I General Relativity 1 1 Introduction 3 2 CoordinateSystems and Transformations 7 2.1 CoordinateSystemsinEuclideanSpace . . . . . . . . . . . . . . . 9 2.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Non-EuclideanGeometry . . . . . . . . . . . . . . . . . . . . . . . 47 2.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3 Tensors and Covariance 55 3.1 SpacetimeCoordinatesand Transformations . . . . . . . . . . . . . 56 3.2 CovarianceandTensorNotation . . . . . . . . . . . . . . . . . . . 60 3.3 Tangentand Cotangent Bundles . . . . . . . . . . . . . . . . . . . 65 3.4 Coordinatesin Spacetime . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 Tensorsand CoordinateTransformations . . . . . . . . . . . . . . . 79 3.6 Tensorsas LinearMapsto Real Numbers . . . . . . . . . . . . . . 84 3.7 TensorsSpecified by TransformationLaws . . . . . . . . . . . . . . 104 3.8 Symmetricand AntisymmetricTensors . . . . . . . . . . . . . . . . 119 3.9 SummaryofAlgebraicTensorOperations . . . . . . . . . . . . . . 122 3.10 TensorCalculuson CurvedManifolds . . . . . . . . . . . . . . . . 123 1 2 CONTENTS 3.11 TheCovariantDerivative . . . . . . . . . . . . . . . . . . . . . . . 129 3.12 AbsoluteDerivatives . . . . . . . . . . . . . . . . . . . . . . . . . 134 3.13 LieDerivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.14 InvariantEquations . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4 Lorentz Covarianceand Special Relativity 145 4.1 MinkowskiSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.2 Tensorsin MinkowskiSpace . . . . . . . . . . . . . . . . . . . . . 153 4.3 LorentzTransformations . . . . . . . . . . . . . . . . . . . . . . . 155 4.4 LightConeDiagrams . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.5 Causal StructureofSpacetime . . . . . . . . . . . . . . . . . . . . 172 4.6 LorentzTransformationsinSpacetimeDiagrams . . . . . . . . . . 177 4.7 LorentzCovarianceofMaxwell’sEquations . . . . . . . . . . . . . 192 5 Lorentz-Invariant Dynamics 201 5.1 Geometrized Units . . . . . . . . . . . . . . . . . . . . . . . . . . 202 5.2 Velocityand MomentumforMassiveParticles . . . . . . . . . . . . 208 5.3 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 5.4 PrincipleofExtremalProperTime . . . . . . . . . . . . . . . . . . 213 5.5 LightRays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 5.6 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 5.7 Isometriesand KillingVectors . . . . . . . . . . . . . . . . . . . . 223 6 The PrincipleofEquivalence 229 6.1 Inertial andGravitationalMass . . . . . . . . . . . . . . . . . . . . 230 6.2 Strong EquivalencePrinciple . . . . . . . . . . . . . . . . . . . . . 232 6.3 Deflection ofLightinaGravitationalField . . . . . . . . . . . . . 234 6.4 TheGravitationalRedshift . . . . . . . . . . . . . . . . . . . . . . 236 6.5 Equivalenceand Riemannian Manifolds . . . . . . . . . . . . . . . 240 6.6 Local InertialFrames andInertial Observers . . . . . . . . . . . . . 243 CONTENTS 3 6.7 LightconesinCurved Spacetime . . . . . . . . . . . . . . . . . . . 247 6.8 TheRoad to General Relativity . . . . . . . . . . . . . . . . . . . . 248 7 Curved Spacetime andGeneral Covariance 249 7.1 CovarianceandPoincaré Transformations . . . . . . . . . . . . . . 250 7.2 Curved Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 7.3 Curved 2DSpaces and GaussianCurvature . . . . . . . . . . . . . 252 7.4 A CovariantDescriptionofMatter . . . . . . . . . . . . . . . . . . 260 7.5 CovariantDerivativesand Parallel Transport . . . . . . . . . . . . . 267 7.6 Gravityand Curved Spacetime . . . . . . . . . . . . . . . . . . . . 278 7.7 TheLocal InertialCoordinateSystem . . . . . . . . . . . . . . . . 282 7.8 TheAffineConnectionand theMetricTensor . . . . . . . . . . . . 283 7.9 UniquenessoftheAffineConnection . . . . . . . . . . . . . . . . . 286 8 The General Theory ofRelativity 289 8.1 Weak Field Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.2 Recipe forMotionina GravitationalField . . . . . . . . . . . . . . 295 8.3 TowardsaCovariantTheory ofGravity . . . . . . . . . . . . . . . 296 8.4 TheRiemann CurvatureTensor . . . . . . . . . . . . . . . . . . . . 298 8.5 Instrinsicand ExtrinsicCurvature . . . . . . . . . . . . . . . . . . 299 8.6 TheEinsteinEquations . . . . . . . . . . . . . . . . . . . . . . . . 301 8.7 SolvingtheEinsteinequations . . . . . . . . . . . . . . . . . . . . 310 9 The Schwarzschild Spacetime 315 9.1 TheFormoftheMetric . . . . . . . . . . . . . . . . . . . . . . . . 317 9.2 MeasuringDistanceandTime . . . . . . . . . . . . . . . . . . . . 324 9.3 Precession ofOrbits . . . . . . . . . . . . . . . . . . . . . . . . . . 348 9.4 Radial Fall ofa TestParticle . . . . . . . . . . . . . . . . . . . . . 355 9.5 OrbitsforLightRays . . . . . . . . . . . . . . . . . . . . . . . . . 358 9.6 Deflection ofLightinaGravitationalField . . . . . . . . . . . . . 360 4 CONTENTS 9.7 Shapiro TimeDelayofLight . . . . . . . . . . . . . . . . . . . . . 361 9.8 Gyroscopesin CurvedSpacetime . . . . . . . . . . . . . . . . . . . 363 9.9 GeodeticPrecession . . . . . . . . . . . . . . . . . . . . . . . . . . 365 9.10 Gyroscopesin RotatingSpacetimes . . . . . . . . . . . . . . . . . 371 10 Neutron Stars and Pulsars 383 10.1 A QualitativePictureofNeutronStars . . . . . . . . . . . . . . . . 384 10.2 TheOppenheimer–VolkovEquations . . . . . . . . . . . . . . . . . 386 10.3 InterpretationoftheMassParameter . . . . . . . . . . . . . . . . . 396 10.4 Pulsars and TestsofGeneral Relativity . . . . . . . . . . . . . . . . 399 10.5 Precision TestsofGeneral Relativity . . . . . . . . . . . . . . . . . 405 II Black Holes 419 11 Spherical BlackHoles 421 11.1 Schwarzschild Black Holes . . . . . . . . . . . . . . . . . . . . . . 422 11.2 LightconeDescriptionofaTriptoaBlack Hole . . . . . . . . . . . 431 11.3 Eddington–FinkelsteinCoordinates . . . . . . . . . . . . . . . . . . 439 11.4 Kruskal–Szekeres Coordinates . . . . . . . . . . . . . . . . . . . . 448 11.5 Black HoleTheoremsand Conjectures . . . . . . . . . . . . . . . . 460 12 Quantum Black Holes 463 12.1 Geodesicsand QuantumUncertainty . . . . . . . . . . . . . . . . . 464 12.2 HawkingRadiation . . . . . . . . . . . . . . . . . . . . . . . . . . 466 12.3 MassEmissionRates and Black HoleTemperature . . . . . . . . . 470 12.4 MiniatureBlack Holes . . . . . . . . . . . . . . . . . . . . . . . . 474 12.5 Black HoleThermodynamics . . . . . . . . . . . . . . . . . . . . . 477 12.6 TheFourLaws ofBlack HoleDynamics . . . . . . . . . . . . . . . 480 12.7 Gravityand QuantumMechanics: thePlanck Scale . . . . . . . . . 483 CONTENTS 5 12.8 Black Holes andInformation . . . . . . . . . . . . . . . . . . . . . 485 13 Rotating BlackHoles 489 13.1 TheKerrSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 13.2 OrbitsintheKerrMetric . . . . . . . . . . . . . . . . . . . . . . . 499 13.3 FrameDragging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 13.4 ExtractingRotationalEnergy fromBlack Holes . . . . . . . . . . . 514 14 ObservationalEvidence forBlack Holes 521 14.1 GravitationalCollapseand Observations . . . . . . . . . . . . . . . 522 14.2 SingularityTheoremsand Black Holes . . . . . . . . . . . . . . . . 523 14.3 ObservingBlack Holes . . . . . . . . . . . . . . . . . . . . . . . . 535 14.4 Black HoleMassesin X-ray Binaries . . . . . . . . . . . . . . . . . 536 14.5 SupermassiveBlack HolesintheCores ofGalaxies . . . . . . . . . 547 14.6 Intermediate-MassBlack Holes . . . . . . . . . . . . . . . . . . . . 559 14.7 Black Holes intheEarlyUniverse . . . . . . . . . . . . . . . . . . 560 14.8 ShowMean EventHorizon! . . . . . . . . . . . . . . . . . . . . . 564 14.9 Summary: A Strong ButCircumstantialCase . . . . . . . . . . . . 569 15 BlackHolesas Central Engines 571 15.1 Black Holes as EnergySources . . . . . . . . . . . . . . . . . . . . 572 15.2 Accretion and EnergyRelease forBlack Holes. . . . . . . . . . . . 574 15.3 MaximumEnergy Release inSpherical Accretion . . . . . . . . . . 575 15.4 Jetsand MagneticFields . . . . . . . . . . . . . . . . . . . . . . . 584 15.5 RelativisticJets andApparent SuperluminalVelocities . . . . . . . 585 15.6 Quasars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 15.7 ActiveGalacticNuclei . . . . . . . . . . . . . . . . . . . . . . . . 601 15.8 TheUnified ModelofAGNand Quasars . . . . . . . . . . . . . . . 611 15.9 Gamma-Ray Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . 634 6 CONTENTS III Cosmology 675 16 The HubbleExpansion 677 16.1 TheStandard Picture . . . . . . . . . . . . . . . . . . . . . . . . . 677 16.2 TheHubbleLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . 689 16.3 LimitationsoftheStandard World Picture . . . . . . . . . . . . . . 709 17 Energy andMatter inthe Universe 711 17.1 ExpansionandNewtonianGravity . . . . . . . . . . . . . . . . . . 713 17.2 TheCritical Density . . . . . . . . . . . . . . . . . . . . . . . . . . 715 17.3 CosmicScale Factor . . . . . . . . . . . . . . . . . . . . . . . . . 718 17.4 PossibleExpansionHistories . . . . . . . . . . . . . . . . . . . . . 721 17.5 LookbackTimes . . . . . . . . . . . . . . . . . . . . . . . . . . . 726 17.6 TheInadequacyofDustModels . . . . . . . . . . . . . . . . . . . 728 17.7 EvidenceforDark Matter . . . . . . . . . . . . . . . . . . . . . . . 729 17.8 Baryonicand Non-BaryonicMatter . . . . . . . . . . . . . . . . . 745 17.9 BaryonicCandidates forDark Matter. . . . . . . . . . . . . . . . . 748 17.10 Candidates forNon-BaryonicDark Matter . . . . . . . . . . . . . 750 17.11 Dark Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753 17.12 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 17.13 DensityParameters . . . . . . . . . . . . . . . . . . . . . . . . . . 755 17.14 TheDeceleration Parameter . . . . . . . . . . . . . . . . . . . . . 758 17.15 ProblemswithNewtonianCosmology . . . . . . . . . . . . . . . . 765 18 Friedmann Cosmologies 767 18.1 TheCosmologicalPrinciple . . . . . . . . . . . . . . . . . . . . . 768 18.2 Homogeneousand Isotropic2D Spaces . . . . . . . . . . . . . . . 772 18.3 Homogeneousand Isotropic3D Spaces . . . . . . . . . . . . . . . 774 18.4 TheRobertson–WalkerMetric . . . . . . . . . . . . . . . . . . . . 779 18.5 ComovingCoordinates . . . . . . . . . . . . . . . . . . . . . . . . 784 CONTENTS 7 18.6 Proper Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . 787 18.7 TheHubbleLaw andtheRWMetric . . . . . . . . . . . . . . . . . 791 18.8 Particleand EventHorizons . . . . . . . . . . . . . . . . . . . . . 792 18.9 TheEinsteinEquationsfortheRWMetric . . . . . . . . . . . . . . 805 18.10 ResolutionofDifficultieswithNewtonianView . . . . . . . . . . . 815 19 Evolutionofthe Universe 817 19.1 Friedmann Cosmologies . . . . . . . . . . . . . . . . . . . . . . . 818 19.2 Evolutionand Scaling ofDensityComponents . . . . . . . . . . . . 829 19.3 Flat, Single-ComponentUniverses . . . . . . . . . . . . . . . . . . 834 19.4 Full SolutionoftheFriedmannEquations . . . . . . . . . . . . . . 851 20 The Big Bang 881 20.1 Radiationand MatterDominatedUniverses . . . . . . . . . . . . . 882 20.2 EvolutionoftheEarlyUniverse . . . . . . . . . . . . . . . . . . . 888 20.3 ThermodynamicsoftheBig Bang . . . . . . . . . . . . . . . . . . 889 20.4 Nucleosynthesisand Cosmology . . . . . . . . . . . . . . . . . . . 915 20.5 TheCosmicMicrowaveBackground . . . . . . . . . . . . . . . . . 924 20.6 TheMicrowaveBackground Spectrum . . . . . . . . . . . . . . . . 926 20.7 Anisotropiesin theMicrowaveBackground . . . . . . . . . . . . . 930 20.8 TheOriginofCMBFluctuations . . . . . . . . . . . . . . . . . . . 936 20.9 Precision MeasurementofCosmologyParameters . . . . . . . . . . 956 20.10 Seeds forStructureFormation . . . . . . . . . . . . . . . . . . . . 961 20.11 Summary: Dark Matter,Dark Energy,and Structure . . . . . . . . 966 21 Extending ClassicalBig Bang Theory 969 21.1 Successes oftheBig Bang . . . . . . . . . . . . . . . . . . . . . . 970 21.2 ProblemswiththeBig Bang . . . . . . . . . . . . . . . . . . . . . 974 21.3 CosmicInflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983 21.4 TheOriginoftheBaryons . . . . . . . . . . . . . . . . . . . . . . 995 8 CONTENTS IV Gravitational Wave Astronomy 1001 22 GravitationalWaves 1003 22.1 SignificanceofGravitationalWaves . . . . . . . . . . . . . . . . . 1004 22.2 Linearized Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 1008 22.3 Weak GravitationalWaves . . . . . . . . . . . . . . . . . . . . . . 1017 22.4 GravitationalWavesversusElectromagneticWaves . . . . . . . . . 1027 22.5 ResponseofTestParticles toGravitationalWaves . . . . . . . . . . 1032 22.6 GravitationalWaveDetectors . . . . . . . . . . . . . . . . . . . . . 1040 23 WeakSources ofGravitationalWaves 1049 23.1 ProductionofWeak GravitationalWaves . . . . . . . . . . . . . . . 1050 23.2 GravitationalRadiationfrom Binary Systems . . . . . . . . . . . . 1065 24 Strong Sources ofGravitationalWaves 1079 24.1 A SurveyofCandidateSources . . . . . . . . . . . . . . . . . . . . 1080 24.2 MultimessengerAstronomy. . . . . . . . . . . . . . . . . . . . . . 1098 24.3 TheGravitationalWaveEventGW150914 . . . . . . . . . . . . . . 1099 24.4 TestingGeneral RelativityinStrong Gravity . . . . . . . . . . . . . 1128 24.5 A NewWindowontheUniverse . . . . . . . . . . . . . . . . . . . 1130 24.6 GravitationalWavesfrom NeutronStar Mergers . . . . . . . . . . . 1131 24.7 GravitationalWavesand StellarEvolution . . . . . . . . . . . . . . 1156 V General Relativity and Beyond 1171 25 Tests ofGeneral Relativity 1173 25.1 AlternativeTheories ofGravity . . . . . . . . . . . . . . . . . . . . 1174 25.2 TheClassical TestsofGeneral Relativity . . . . . . . . . . . . . . . 1178 25.3 TheModernTestsofGeneral Relativity . . . . . . . . . . . . . . . 1180 25.4 Strong-Field TestsofGeneral Relativity . . . . . . . . . . . . . . . 1189 CONTENTS 9 25.5 CosmologicalTests ofGeneral Relativity . . . . . . . . . . . . . . 1194 26 BeyondStandard Models 1197 26.1 Supersymmetryand Dark Matter . . . . . . . . . . . . . . . . . . . 1199 26.2 VacuumEnergy from QuantumFluctuations . . . . . . . . . . . . . 1207 26.3 QuantumGravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.