ebook img

Models and Sets: Proceedings of the Logic Colloquium held in Aachen, July 18–23, 1983 Part I PDF

489 Pages·1984·5.729 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Models and Sets: Proceedings of the Logic Colloquium held in Aachen, July 18–23, 1983 Part I

Lecture Notes ni Mathematics Edited yb .A Dold dna .B Eckmann 3011 Models dna Sets Proceedings of the Logic Colloquium held ni Aachen, July 18-23, 1983 Patti Edited yb .G .H Meller and M.M. Richter galreV-regnirpS nilreB Heidelberg New York oykoT 1984 Editors Gert .H rellUM Heidelberg Universit~t Institut, Mathematisches mI Feld Neuenheimer 294, 6900 Heidelberg, laredeF Republic of Germany Michael .M Richter Lehrgebiet ehcsitamehtam Grundlagen der ,kitamrofnI Aachen RWTH nebargrelpmeT ,46 Aachen, 5100 laredeF Republic of Germany AMS Subject Classification :)0891( 03 ,C 03 ,E 03 ,G 03 H ISBN 1-00931-045-3 galreV-regnirpS York New Heidelberg Berlin oykoT ISBN 1-00931-783-0 galreV-regnirpS Berlin Heidelberg York New oykoT This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich. © by Springer-Verlag Berlin Heidelberg 1984 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2146/3140-543210 VORWORT Dieser Band enth~it einen Teil der Proceedings des Logic Colloquiums '83, welches vom 18. - 23. Juli 1983 in Aachen stattfand; es war dies gleichzeitig der Europiische SommerkongreB der Association for Symbolic Logic. Ein weiterer Band der Proceedings erscheint unter dem Titel "Computation and Proof Theory" ebenfalls in den Lecture Notes in Mathematics des Springer-Verlages. Insgesamt hatte das Logic Colloquium '83 189 Teilnehmer aus 26 L~ndern. Zusitzlich zu den eingeladenen Hauptvortr~gen wurden siebzig angemeldete Vortr~ge gehalten. Ein Tell davon fand in "Special Sessions" statt: Boole'sche Algebren (organisiert von S.Koppelberg), Topologische Modelltheorie (J.Flum), Nonstandard Analysis (K.H.Diener), Logic versus Computer Science (E.B6rger). Abstracts aller angemeldeten Vortrige sowie eine Vollstindige Liste aller eingeladenen Vortr~ge werden im Bericht der Veranstalter im Journal of Symbolic Logic ver~ffentlicht. Das Logic Colloquium '83 wurde erm~glicht durch groBz~gige finanzielle UnterstOtzung der Deutschen Forschungsgemeinschaft, des Landes Nordrhein-Westfalen, der Division of Logic, Methodology and Philosophy of Science, dem Deutschen Akademischen Austauschdienst, der Deutschen Stiftung fur Internationale Entwicklung, der Maas-Rhein-Euregio, der Stadt Aachen, der RWTH Aachen und nicht zuletzt der deutschen Industrie. Ihnen allen sei herzlich gedankt! Die alte Kaiserstadt Aachen gab einen w~rdigen Rahmen ab. Oberstadtdirektor Dr. H. Berger erbffnete den KongreB als Schirmherr im Namen der Maas-Rhein-Euregio. Die erste BUrgermeisterin Frau Prof. Dr. W. Kruse lud ein zu einem Empfang im Kr~nungssaal des Rathauses, der fur die Teilnehmer zu einem bleibenden Erlebnis wurde. Auch hierfUr ein herzliches "Danke"! Die Herausgeber CONTENTS VORWORT III J. Baeten I Filters and Ultrafilters over Definable Subsets of Admissible Ordinals B. Benninghofen Superinfinitesimals and the Calculus of the Generalized Riemann Integral A.J. Berner, I. Juhasz 53 Point-Picking Games and HFD's R. Bonnet 67 On Homomorphism Types of Superatomic Interval Boolean Algebras G.L. Cherlin* 83 Decidable Theories of Pseudo-Algebraically Closed Fields G.L. Cherlin* 102 Definability in Power Series Rings of Npnzero Characteristics G.L. Cherlin, H. Volger 113 Convexity Properties and Algebraic Closure Operators J. Czelakowski 147 Remarks on Finitely Based Logics J.M. Font 169 Monadicity in Topological Pseudo-Boolean Algebras .W Hodges* 193 Finite Extensions of Finite Groups G.F. van der Hoeven, I. Moerdijk* 207 Constructing Choice Sequences from Lawless Sequences of Neighbourhood Functions E. Kranakis, I. Phillips 235 Partitions and Homogeneous Sets for Admissible Ordinals .W Lenski 261 Elimination of Quantifiers for the Theory of Archimedean Ordered Divisible Groups in a Logic with Ramsey Quantifiers S.C. Liu 281 A Proof-Theoretic Approach to Non Standard Analysis (Continued) K.L. Manders 297 Interpretations and the Model Theory of the Classical Geometries A. Marcja, C. Toffalori 331 On Cantor-Bendixson Spectra Containing (I ,I) - I (°) Vl D. Mundici 351 Abstract Model-Theory and Nets of C*-Algebras: Noncommutative Interpolation and Preservation Properties R. Murawski 379 A Contribution to Nonstandard Teratology P.H. Schmitt 389 Model- and Substructure Complete Theories of Ordered Abelian Groups V. Weispfenning* 419 Quantifier Elimination and Decision Procedures for Valued Fields Ph. Welch I 473 On 2 Z * Invited Lecture TABLE FO STNETNOC - PART 11 (published in L~I vol. )4011 VORWORT .K AMBOS-SPIES * Contiguous R.E. Degrees H.-G. CARSTENS, P. PNPPINGHAUS * 39 Abstract Construction of Counterexamples in Recursive Graph Theory C.T. CHONG, C.G. JOCKUSCH 63 Minimal Degrees and 1-generic Sets below 0' J.N. CROSSLEY, J.B. REMMEL * 79 Undecidability and Recursive Equivalence II L. DENENBERG, H.R. LEWIS lol Logical Syntax and Computational Complexity E.C. DENNIS-JONES, S.S. WAINER 117 Subrecursive Hierarchies via Direct Limits E.J. FARKAS, M.E. SZABO * 129 A Star-Finite Relational Semantics for Paral]el Programs S. FEFERMAN 143 Between Constructive and Classical Mathematics .G GERMANO, S. MAZZANTI * 163 Partial Closures and Semantics of While: Towards an Iteration-Based Theory of Data Types Y. GUREVICH 175 Toward Logic Tailored for Computational Complexity .P HAJEK 217 On a New Notion of Partial Conservativity P.G. HINMAN 233 Finitely Approximable Sets Ch. KREITZ, .K WEIMRAUCH* 259 A Unified Approach to Constructive and Recursive Analysis .P LINDSTRUM* 279 On Faithful Interpretability Y.N. MOSCHOVAKIS 289 Abstract Recursion as a Foundation for the Theory of Algorithms D. RUDDING t 363 Some Logical Problems Connected with a Modular Decomposition Theory of Automata VIII U.R. SCHMERL * 389 Diophantine Equations in a Fragment of Number Theory P. SCHROEDER-HEISTER ~ 399 Generalized Rules for Quantifiers and the Completeness of the Intuitionistic Operators &, v, D, ~, V, 3 P.H. SLESSENGER * 427 On Subsets of the Skolem Class of Exponential Polynomials D. SPREEN, .P YOUNG * 437 Effective Operators in a Topological Setting T. UESU ~ 453 An Axiomatization of the Apartness Fragment of the Theory DLO + of Dense Linear Order t Professor Dr. D. R6dding died on June ,~4 1984 * An asterisk indicates a contributed paper. FILTERS AND ULTRAFILTERS OVER DEFINABLE SUBSETS OF ADMISSIBLE ORDINALS by Jos Baeten, Technische Hogeschool Delft, The Netherlands. This article is part of the author's Ph.D. thesis, to appear under the same title at the University of Minnesota. 0. Abstract The search for a recursive analogue of a measurable cardinal leads to a study of filters and ultrafilters over certain definable subsets of an admissible ordinal, using the hierarchy of constructible sets. Connections with admissibility are explored in sections 2 and 3, and we find that the existence of a normal filter is stronger than the existence of the same type of filter (section 3). We look at the analoghes of certain classical filters, namely the co-finite filter in section 2 and the normal filter of closed unbounded sets in section 3. In section 4, we find that any filter (resp. normal filter) of a certain type can, on a countable ordinal, be extended to an ultrafilter (resp. normal ultrafilter) of the same type. 2 J.Baeten I. Preliminaries and notation Lower case Greek letters represent ordinals, and lower case Latin letters represent non-negative integers. We work in the constructible hierarchy L = U{L~ :~eOrd}. The L4vy hierarchy of ~-m' ][m and A_ m formulas is defined as usual. A relation R on K L is ~L K (where ~ is a set of e- formulas), if it is definable by a {-formula with parameters from L~. An ordinal M iS~n-admissible if for all ~ e ~L~ and all ~<~ LK ~ ~/B<~ ~ ) ~ ~Vg<~<~ ~(~,~). Pow(~) is the powerset of ~, /k{X~ : 8<M} = {~< ~: ~B<~ ~ eXs}, X\Y = {xex : x~Y}. Note: to avoid unnecessary complications we will always assume ~ is an ordinal with ~K=~ and n>0. 2. Filters 2.1 Definition: Let F~Pow(~) be a nonprincipal filter on M, i.e. i. X, YeF >- X~Y e F ii. X e F & X~ Y >- Y e F iii. ~ ~ F iv. ~;4~<K ~&\{B} ~ F. Let ~ be a sat of e-formulas (usually Zn, ~n or /k s). a. F is a ~-filter if ~Q<K ~/<X B : 8<~> e ~L~]~F 6]{X~ : ~<~} e F. b. F is a ~-normal filter if V<x~ : 8<K> e ~L~/~F /k{X 8 : 8<~(} e F. c. F is ~-ultra if X/~ e ~L M X e F or &<\X e F. d. F is a ~-ultrafilter if a. and c. hold; F is a ~-normal ultrafilter if b. and c. hold. 2.2 Note: a /kn-filter is often considered to be defined just on the Boolean algebra of KLn___~ sets; a ~n- or ~n-filter on the Boolean algebra generated by the ~nL ~ sets (the so-called BnL ~ sets). 2.3 Definition: H = {X~ : ~\X is bounded in ~}. Note that if F is a /kl-filter, then H~F. For the next theorem we need a lemma from Kranakis [1982a]: 2.4 Lemma: The following are equivalent: i. K is ~n+l-admissible ii. For all ~<K and all _A~nL f : ~--> p there is a ~<~ such that f-l({8}) is cofinal in M. 2.5 Theorem: The following are equivalent: i. ~W is ~n+l-admissible ii. there is a /kn-filter on iii. there is a ~n-filter on proof : iii >- ii : immediate. ii >- i: we use 2.4. Let F be a /~n-filter on .,V Suppose ~<I(, f :~--> ~ is /knL ~ but for each 8<~ f-l({fi}) is bounded in .~I Then -i for each ~<~ we have that ~\f ({~}) e H~.F (by 2.3), so = t-%{v,\f-l({8}) : ~<~} e F, a contradiction. i ~- iii: we show H is a ~n-filter on .(~ It is easy to see that H is a nonprincipal proper filter on ~. Thus let ~<H and <X~ : ~<~> e ~nL~;q~H. Take ~ e ~nL~ such that e X~ <~ L~ ~(~,~) (for ~<~). Then ~)L ~ ~/B<~ (0~ ~>j~ ~(~,~). Since ,~ iS~n+l-admissible , there is a ~<~ such that ~ ~ ~<~ 3,x<,~ ~.>~V Tc~,~), o~ L~ ~ ~.>~V c~<~ ~c~,~)).or /~{X s : S<~} e H.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.