ebook img

Modelling the Evolution of Natural Fracture Networks: Methods for Simulating the Nucleation, Propagation and Interaction of Layer-Bound Fractures PDF

237 Pages·2020·11.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modelling the Evolution of Natural Fracture Networks: Methods for Simulating the Nucleation, Propagation and Interaction of Layer-Bound Fractures

Michael John Welch Mikael Lüthje Simon John Oldfield Modelling the Evolution of Natural Fracture Networks Methods for Simulating the Nucleation, Propagation and Interaction of Layer-Bound Fractures Modelling the Evolution of Natural Fracture Networks · · Michael John Welch Mikael Lüthje Simon John Oldfield Modelling the Evolution of Natural Fracture Networks Methods for Simulating the Nucleation, Propagation and Interaction of Layer-Bound Fractures MichaelJohnWelch MikaelLüthje DanishHydrocarbonResearchand DanishHydrocarbonResearchand TechnologyCentre TechnologyCentre TechnicalUniversityofDenmark TechnicalUniversityofDenmark KongensLyngby,Denmark KongensLyngby,Denmark SimonJohnOldfield DanishHydrocarbonResearchand TechnologyCentre TechnicalUniversityofDenmark KongensLyngby,Denmark ISBN978-3-030-52413-5 ISBN978-3-030-52414-2 (eBook) https://doi.org/10.1007/978-3-030-52414-2 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Naturalfracturenetworksareimportantincontrollingthemechanicalbehaviourand flowoffluidsthroughgeologicalformations.Itis,therefore,essentialtoincludefrac- turenetworksinthestaticgeomodelsthatareusedtomodelsuchbehaviour,inappli- cations ranging from tunnel excavation and mining to groundwater management, hydrocarbon exploration and production, geothermal energy extraction and CO 2 sequestration.However,fracturescannotnormallybemappeddirectlyinthesubsur- face,astheyarebelowtheresolutionofgeophysicaldata,andboreholesprovideonly very limited data coverage. Traditional solutions to this problem include building stochasticfracturemodels,inwhichfracturesofarbitrarysizeareplacedatrandom locationsinanattempttomatchthefracturedensitiesmeasuredintheboreholes,or using numerical methods such as the finite element method to simulate the nucle- ationandgrowthofthefractures.However,theformermethodproducesinaccurate andgeologicallyunrealisticfracturemodels,whilethelatteristoocomputationally expensivetobepracticalforanybutthesimplestfracturesystems. Inthisbook,wepresentanewmethodofsimulatingthegrowthoflayer-bound fracture networks, which is based on fundamental geomechanical principles, but is simple enough to model large networks containing hundreds of thousands of fractures across major geological structures such as anticlines and diapirs. This is achieved by combining the established theories of subcritical fracture propaga- tion,linearelasticfracturemechanicsandfracturedistributiontoderivequantitative expressionsdescribingtheevolutionofthefracturenetwork,basedonthemechanical propertiesofthehostrockandthedeformationhistory. We start by modelling the growth of small circular fractures within a homoge- neouslayer.Wethenfocusonlayer-boundfracturesthatareconfinedwithinbrittle competent layers (which often act as aquifers or reservoirs) sandwiched between moreductilelayers(whichoftenactasseals).Byapplyingtheexpressionsforfrac- turegrowthtocumulativedistributionfunctionsdescribingthefracturepopulations asawhole,wecanmodeltheevolutionofthesepopulationsthroughtimewithout needingtomodelthegrowthofeachfractureindividually.Todothisaccurately,we must also model the effects of fracture interaction; this includes both intersection withperpendicularorobliquefracturesandstressshadowinteractionwithparallel fractures.Theresultingexpressionscanpredictthedensityoffracturesofdifferent v vi Preface sizes,andindifferentorientations,atdifferentlocationsacrossthegeologicalstruc- ture we are modelling, as well as predicting important properties of the fracture networksuchasfractureporosityandconnectivity.Finally,wecanusetheseresults togenerateageomechanicallyconsistentexplicitDiscreteFractureNetwork(DFN) model. Thismethodcanbeusedtoexplorethecontrolsondifferentaspectsofthefracture networks that develop under different conditions. We show that the mean linear density(P )oflayer-boundfracturesismainlycontrolledbythepresenceofstress 32 shadowsandthelayerthickness,whilethevolumetricdensity(P )andmeanlength 30 of layer-bound fractures are controlled by many factors, including the duration of deformation,thesubcriticalfracturepropagationindex(whichcontrolsthefracture propagationrate),theinitialmicrofracturepopulationandtheinteractionsbetween thefractures(whichareinturndependentonanisotropyintheappliedstrain).We showthatfracturenetworksmaynotstarttodevelopimmediatelywhenhorizontal strainisapplied,butthatoncetheydostarttodeveloptheygrowveryrapidly,often reaching“saturation”(whennofurtherfracturescannucleateorpropagate)within tensofthousandsofyearsorless.Onalargescale,thefracturenetworkoftenappears firstatthelocationofgreateststrainonthelarge-scalegeologicalstructure(e.g.on thecrestofananticlineordiapir),andthensweepsoutwardsacrossthestructureasa sharp“deformationfront”.Ifwelookatthelarge-scalestructureatanyspecificpoint in time, therefore, we can divide it into unfractured and fully fractured (saturated) zonesseparatedbyaclearlydefinedboundary,ratherthanseeingagradualvariation in fracture density across the structure. We also show that mode of the fractures (i.e.Mode1dilatantfracturesverseMode2shearfractures)isdependentnotonly on the mechanical properties and fluid overpressure (which we might expect), but alsothepropagationrate(Mode1fracturesaremorelikelytoformifthesubcritical fracturepropagationindexishigh).Finally,weinvestigatewaysofcharacterisingthe anisotropyandconnectivityofthefracturenetworkandshowhowtheseproperties evolveasthefracturenetworkdevelops. A method of this complexity requires calibration against real fracture networks beforewecanapplyitwithconfidencetothesubsurface.Wehaveselectedthreefrac- turedoutcropsfromtheUKforthispurpose.TheNashPointoutcropinsouthWales exposesauniaxialfracturenetwork(i.e.comprisingasinglesetofparallelfractures) in thin brittle limestone beds sandwiched between ductile shales (Maerten et al. 2016).Weshowthatthethicknessofthelimestonebedscontrolstheobservedfrac- turespacing,andweshowhowtoreplicatetheobservedfracturelengthsbyadjusting thesubcriticalfracturepropagationindexandtheinitialmicrofracturedensity.The Robin Hood’s Bay outcrop in northeast England exposes an orthogonal fracture network,comprisingtwoperpendicularsetsoflayer-boundfractures,againconfined withinthinbrittlelimestonebedssandwichedbetweenductileshales(Rawnsleyetal. 1993).Theanisotropyofthisnetworkvarieslaterallyacrosstheoutcrop;weshow thatthisvariationinfractureanisotropyistheresultoflateralvariationinthelocal strainaroundthekm-scalePeakFault,whichliestotheeastoftheoutcrop.Finally, thePegwellBayoutcropinsoutheastEnglandexposesaseriesoffracturecorridors propagatingoutwardsfromstrike-slipfaultsinchalk(Souqueetal.2019).Weshow Preface vii that it is possible to reproduce the growth of these fracture corridors, but only in conditions of high fluid overpressure, high subcritical fracture propagation index andwithoutthedevelopmentofstressshadowsaroundthefractures. Finally we use this new method to predict fracture networks in two subsurface examples.TheKrakafieldisahydrocarbonfieldoffshoreDenmark,producingfrom afracturedchalkreservoiroverlyingasaltpillow.Weshowthatthefracturenetwork generated by a combination of growth of the salt pillow and local strain around a set of seismically-mapped faults gives a good match for the fractures observed on boreholeimagesandincore(describedbyAabøetal.2019).TheAnloosaltdiapir near Drenthe in the Netherlands is considered a potential prospect for geothermal energy extraction, utilising several fractured reservoir layers overlying the diapir. Although the large-scale structure has been mapped out from seismic data, there is very little well data available with which to constrain the fracture population. We show how the new method can be used to identify the areas most likely to be fracturedandpredictthemostlikelyfracturegeometriesatdifferentpointsaround the structure. We then show how to quickly build multiple, geologically realistic fracturemodelsfromthislimiteddatasetforuseinuncertaintyandriskanalysis. KongensLyngby,Denmark MichaelJohnWelch July2020 MikaelLüthje SimonJohnOldfield Acknowledgements TheauthorskindlyacknowledgetheDanishUndergroundConsortium(TotalE&P Denmark, Noreco & Nordsøfonden) for providing data for the Kraka field and granting the permission to publish this work. This research has received funding fromtheDanishHydrocarbonResearchandTechnologyCentre(DHRTC)underthe AdvancedWaterFloodingprogramme. We would also like to thank Total E&P Denmark, and especially Amit Singh, AlainLejay,MauritsdeHeer,KlaasKostroandAlanCunninghamfortheirhelpin testingthemodeloutputintheirdynamicsimulations,providingfeedbackandgood discussions. We would like to thank everyone at DHRTC and partner institutions who have contributedtothisresearchproject.InparticularwewouldliketothankFlorianSmit providinguswithinputandhelpbuildingtheDrenthemodel.Thanksalsogoesto TalaAabø,JesperDramschandSolomonSeymunforprovidinguswithresultsfrom their analysis of borehole images, seismic data and core for the Kraka field. We wouldliketoacknowledgeFredericAmourlettingususeresultsfromhisextensive workcharacterisingtheelasticmoduliofthechalkinKraka.Wewouldliketogivea specialthankstoAslaugClemmensenGladforherworkonthesensitivityanalyses. WewouldliketothankOleRønøClausenandKenniPetersenatAarhusUniversity forprovidinguswithstraindatafortheKrakafield,andforallowingustousethe strain history modelling software that they developed to generate strain data for Drenthe. We would like to thank Bertrand Gauthier and his colleagues in the Naturally FracturedReservoirTeamatTotalforhelpfulfeedbackanddiscussion. We would like to acknowledge Ordnance Survey data and style sheets shared undertheOpenGovernmentLicence. WewouldliketoacknowledgedatasharedbytheGeologischeDienstNederland, partofTNO,throughdinoloket.nl. Finally,wewouldalsoliketoacknowledgeourcolleagues,students,familiesand friendswhohaveoftencontributedtoourworkthroughdiscussionandquestioning oftheprocessesandconceptsbehindthisbook. ix Contents 1 Introduction .................................................. 1 1.1 BackgroundandPreviousWork ............................ 2 1.1.1 Impact of Fracture Networks on Bulk Rock Properties:The“TM”Approach .................... 3 1.1.2 Modelling Fractures Explicitly: The “DFN” Approach ........................................ 4 1.1.3 SimulatingFractureGrowth:TheMechanical Approach ........................................ 5 1.1.4 Implementation and Practical Application ofFractureModels ................................ 7 1.2 ObjectivesofThisStudy .................................. 9 1.3 StructureofThisBook .................................... 12 References .................................................... 13 2 ConceptualModelforFractureNetworkGrowth ................ 17 Reference ..................................................... 20 3 ModellingMicrofractures ...................................... 21 3.1 MicrofracturePropagationRate ............................ 21 3.2 MicrofractureGrowth ..................................... 23 3.3 VolumetricMicrofractureDensity .......................... 24 3.4 MeanLinearMicrofractureDensity ......................... 25 References .................................................... 26 4 ModellingLayer-BoundMacrofractures ........................ 29 4.1 MacrofracturePropagationRate ............................ 30 4.2 VolumetricMacrofractureDensity .......................... 30 4.3 MeanLinearMacrofractureDensity ........................ 32 4.4 CalculatingMacrofracturePorosityandStressShadow Volume ................................................. 33 References .................................................... 36 xi xii Contents 5 ActiveandStaticFractures .................................... 37 5.1 CalculatingtheFractureDeactivationProbabilities ............ 39 5.1.1 ProbabilityofMicrofractureDeactivationDue toInteractionwithMacrofractureStressShadows ..... 40 5.1.2 ProbabilityofHalf-MacrofractureDeactivation DuetoStressShadowInteraction ................... 42 5.1.3 ProbabilityofHalf-MacrofractureDeactivation DuetoIntersection ................................ 46 5.1.4 CombiningtheHalf-MacrofractureDeactivation Probabilities ..................................... 49 5.2 CalculatingActiveandStaticMicrofracturePopulations ....... 50 5.2.1 VolumetricMicrofractureDensity ................... 50 5.2.2 MeanLinearMicrofractureDensity ................. 51 5.3 Calculating Active and Static Half-Macrofracture Populations .............................................. 52 5.3.1 VolumetricHalf-MacrofractureDensity .............. 52 5.3.2 MeanLinearHalf-MacrofractureDensity ............ 59 5.4 CalculatingResidualMacrofracturePopulations .............. 68 5.4.1 CalculatingtheVolumetricDensityofResidual ActiveHalf-Macrofractures ........................ 68 5.4.2 CalculatingtheVolumetricDensityofResidual StaticHalf-Macrofractures ......................... 73 5.4.3 CalculatingtheMeanLinearDensityofResidual ActiveHalf-Macrofractures ........................ 75 5.4.4 CalculatingtheMeanLinearDensityofResidual StaticHalf-Macrofractures ......................... 76 6 ElasticModuli,StressandFractureGrowth ..................... 79 6.1 ElasticModuliintheStressShadowScenario ................ 80 6.2 ElasticModuliintheEvenlyDistributedStressScenario ....... 82 References .................................................... 85 7 ApplyingtheMethodtoGeologicalFormations .................. 87 7.1 GeometryoftheStaticGeomodel ........................... 87 7.2 GeneratingImplicitFractureData .......................... 88 7.3 GeneratingtheExplicitDFN ............................... 91 7.4 ComparingtheImplicitandExplicitOutput .................. 94 8 ControlsonFractureEvolution ................................. 99 8.1 ControlsonMeanLinearFractureDensity ................... 100 8.1.1 StressShadows ................................... 100 8.1.2 LayerThickness .................................. 101 8.1.3 FractureModeandFrictionCoefficient .............. 101 8.1.4 DurationofDeformation ........................... 104 8.2 ControlsonFractureDistribution ........................... 109

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.