ebook img

Modeling in food microbiology : from predictive microbiology to exposure assessment PDF

104 Pages·2016·6.721 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling in food microbiology : from predictive microbiology to exposure assessment

Modeling in Food Microbiology This page intentionally left blank Modeling and Control of Food Processes Set coordinated by Jack Legrand, Gilles Trystram Modeling in Food Microbiology From Predictive Microbiology to Exposure Assessment Edited by Jeanne-Marie Membré Vasilis Valdramidis First published 2016 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Press Ltd Elsevier Ltd 27-37 St George’s Road The Boulevard, Langford Lane London SW19 4EU Kidlington, Oxford, OX5 1GB UK UK www.iste.co.uk www.elsevier.com Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. For information on all our publications visit our website at http://store.elsevier.com/ © ISTE Press Ltd 2016 The rights of Jeanne-Marie Membré and Vasilis Valdramidis to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress ISBN 978-1-78548-155-0 Printed and bound in the UK and US Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Jeanne-Marie MEMBRÉ and Vasilis VALDRAMIDIS Chapter 1. Predictive Microbiology . . . . . . . . . . . . . . . . . . . . . 1 Vasilis VALDRAMIDIS 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4. The modeling cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1. Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.2. Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.3. Mathematical description . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.4. Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 2. Quantifying Microbial Propagation . . . . . . . . . . . . . . 17 Enda CUMMINS 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2. Probability processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1. Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2. Beta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3. Negative binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.4. Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 vi Modeling in Food Microbiology 2.3. Uncertainty (U) and variability (V) . . . . . . . . . . . . . . . . . . . 26 2.3.1. Definition and interest of incorporating them in the model . . . . . 26 2.4. Modeling propagation using a modular model . . . . . . . . . . . . . . 26 2.4.1. Incorporation of probability distributions into predictive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.2. Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5. Separation of uncertainty and variability when building a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chapter 3. Modeling Microbial Responses: Application to Food Spoilage . . . . . . . . . . . . . . . . . . . . . . . . 33 Jeanne-Marie MEMBRÉ and Stéphane DAGNAS 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2. Modeling spoilage: application to commercial sterility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1. Context: commercial sterility and G. stearothermophilus . . . . . . 35 3.2.2. Modeling framework: modular process risk model . . . . . . . . . 36 3.2.3. Model set up: choices of inputs and simulation procedure . . . . . 39 3.2.4. Probabilistic toolbox: second-order Monte Carlo analysis, sensitivity and scenario analysis . . . . . . . . . . . . . . 40 3.3. Modeling spoilage: application to best-before-date determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.1. Context: mould spoilage of food products . . . . . . . . . . . . . . 42 3.3.2. Factors affecting the mould growth on bakery-type products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.3. Primary and secondary models developed (specifically) for mould spoilage . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.4. Use of models to derive management options which enable us to prevent/control food spoilage . . . . . . . . . . . . . . 47 3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Chapter 4. Modeling Microbial Responses: Application to Food Safety . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Maria GOUGOULI and Konstantinos KOUTSOUMANIS 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2. Risk-based food safety management . . . . . . . . . . . . . . . . . . . . 63 4.2.1. Predictive microbiology in a risk-based approach . . . . . . . . . . 65 4.2.2. Modeling microbial responses: application to food safety . . . . . 70 Contents vii 4.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Jeanne-Marie MEMBRÉ and Vasilis VALDRAMIDIS List of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 This page intentionally left blank Introduction The “traditional” food quality and safety management approach is based on end-product testing. However, end-product testing gives only very limited information on the safety status of a food. The food safety crisis of the 1990s (e.g. Listeria, Salmonella, Escherichia coli, Campylobacter, dioxins, antibiotics, acrylamide, BSE, etc.) revealed a failure in this traditional approach. If a hazardous organism is found, it means something; but its absence in a limited number of samples is no guarantee for the safety of a whole production batch. End-product testing is often too little and takes place too late [ZWI 16]. Nowadays, effective food quality and safety management systems should rely on prerequisite programs (e.g. good manufacture practices and good hygiene practices), the Hazard Analysis Critical Control Points (HACCP) plan as well as on quantitative tools, namely predictive microbiology and risk assessment approaches. The development and application of models in food safety and food spoilage falls within the discipline of predictive (food) microbiology, also called predictive modeling in foods [VAN 00, VAN 03], or quantitative microbial ecology [ROS 99]. Schaffner and Labuza [SCH 97] defined this area as the gathering of the disciplines of food microbiology, engineering and statistics to provide useful predictions about microbial behavior in food systems. It, therefore, involves the accumulation of qualitative and quantitative information on microbial behavior in foods and an increased understanding of the microbial physiology [MCM 02a]. Predictive microbiology has a proactive nature in contrast with the retrospective surveillance resting on the prevention of food-borne disease [MCM 02b]. Introduction written by Jeanne-Marie MEMBRÉ and Vasilis VALDRAMIDIS.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.