ebook img

MODELING DYNAMIC STALL OF SC-1095 AIRFOIL - SMARTech PDF

123 Pages·2010·5.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MODELING DYNAMIC STALL OF SC-1095 AIRFOIL - SMARTech

MODELING DYNAMIC STALL OF SC-1095 AIRFOIL AT HIGH MACH NUMBERS A Thesis Presented To The Academic Faculty By Brian Clark In Partial Fulfillment of the Requirements for the Degree Master of Science in the School of Aerospace Engineering Georgia Institute of Technology May 2010 MODELING DYNAMIC STALL OF SC-1095 AIRFOIL AT HIGH MACH NUMBERS Approved by: Dr. Lakshmi Sankar School of Aerospace Engineering Georgia Institute of Technology Dr. J.V.R. Prasad School of Aerospace Engineering Georgia Institute of Technology Dr. Mark Costello School of Aerospace Engineering Georgia Institute of Technology Date Approved: January 15, 2010 ACKNOWLEDGEMENTS I would like to sincerely thank my advisor, Dr. Lakshmi Sankar. His patience and advice were invaluable to the completion of this work. I also owe a debt of gratitude to other graduate students working in the CFD lab that have assisted me over the course of my studies at Georgia Tech. Nischint Rajmohan and Jeremy Bain in particular have dedicated much of their time to assist me, and their help is greatly appreciated. Finally, I would like to acknowledge the emotional support and encouragement I have routinely received from friends and family. 
 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS..........................................................................................................ii
 LIST
OF
TABLES........................................................................................................................v
 LIST
OF
FIGURES.....................................................................................................................vi
 NOMENCLATURE.....................................................................................................................ix
 SUMMARY................................................................................................................................xii
 CHAPTER
1:
INTRODUCTION...............................................................................................1
 CHAPTER
2:
RESEARCH
OBJECTIVES.................................................................................5
 CHAPTER
3:
ANATOMY
OF
DYNAMIC
STALL...................................................................7
 CHAPTER
4:
LEISHMAN­BEDDOES
MODEL...................................................................10
 Attached Flow Model...................................................................................................................10
 Separated Flow Model.................................................................................................................15
 Dynamic Stall Model with Vortex Shedding.......................................................................20
 Subsystem Interaction................................................................................................................23
 CHAPTER
5:
VALIDATION
OF
THE
LEISHMAN­BEDDOES
MODEL.........................25
 CHAPTER
6:
DESCRIPTION
AND
VALIDATION
OF
THE
CFD
TOOLS......................30
 CHAPTER
7:
ASSESSMENT
OF
THE
LEISHMAN­BEDDOES
MODEL........................37
 CHAPTER
8:
MODIFICATIONS
TO
THE
MODEL
AND
DISCUSSIONS.......................58
 Lift Curve Slope and Zero Lift AoA........................................................................................58
 Dynamic Stall Pitching Moment Vortex Convection Time Constant, T ................60
 vl Trailing Edge Separation Time Constant, T.......................................................................61
 f 
 iii Effective Separation Point.........................................................................................................62
 Center of Pressure........................................................................................................................66
 Indicial Constants..........................................................................................................................72
 Post Modification Results and Discussion.........................................................................75
 CHAPTER
9:
CONCLUSIONS
AND
RECOMMENDATIONS...........................................88
 APPENDIX
A:
DERIVATION
OF
LEISHMAN
BEDDOES
PARAMETERS....................90
 REFERENCES.........................................................................................................................108
 
 iv LIST OF TABLES 
 
 
 Table 1: Test Matrix.................................................................................................................................5
 Table 2: Empirical Parameters Used in Leishman-Beddoes Method.........................24
 Table 3: Modifications to Cna and Zero Lift AoA...................................................................58
 Table 4: T Values................................................................................................................................61
 vl Table 5: Sensitivity of A1, A2, b1, and b2.................................................................................74
 Table 6: Sensitivity of A3, A4, b3, and b4.................................................................................74
 Table 7: Sensitivity of b5....................................................................................................................74
 
 v LIST OF FIGURES Figure 1: Comparison of CFD and NN Reduced Order Model (ROM)[26]....................4
 Figure 2: The Effect of Dynamic Stall on NACA 0012 Airfoil[9]..........................................8
 Figure 3: Forces Acting on Airfoil..................................................................................................10
 Figure 4: Diagram Showing Flow Separation on an Airfoil...............................................16
 Figure 5: Leishman-Beddoes Results, k=.075, α =9, α =8............................................26
 m C Figure 6: Leishman-Beddoes Results, k=.075, α =12, α =8.........................................27
 m C Figure 7: Leishman-Beddoes Results, k=.075, α =15, α =8.........................................28
 m C Figure 8: Drag Coefficient, M=0.4, k=.075, α =10.3, α =8.1.........................................29
 m C Figure 9: CFD Computational Grid...............................................................................................31
 Figure 10: Close-up of Grid Around Airfoil................................................................................31
 Figure 11: Predicted and Observed Airloads Using KES Model[24].............................32
 Figure 12: Comparison of CFD Results and Exp Data, M=0.3, k=.03, α =15, m α =10..................................................................................................................................................33
 C Figure 13: Comparison of CFD Results and Exp Data, M=0.3, k=.05, α =15, m α =10..................................................................................................................................................34
 C Figure 14: Comparison of Experimental, CFD, and Leishman-Beddoes Results35
 Figure 15: OVERFLOW Results Including Windtunnel Walls[28]...................................36
 Figure 16: M=0.3, α =10, α =10, k=0.03..................................................................................38
 m c Figure 17: M=0.3, α =10, α =10, k=0.05..................................................................................39
 m c Figure 18: M=0.3, α =10, α =10, k=0.1.....................................................................................40
 m c Figure 19: M=0.3, α =5, α =5, k=0.05........................................................................................41
 m c Figure 20: M=0.4, α =10, α =10, k=0.03..................................................................................42
 m c Figure 21: M=0.4, α =10, α =10, k=0.05..................................................................................43
 m c Figure 22: M=0.4, α =10, α =10, k=0.1.....................................................................................44
 m c Figure 23: M=0.4, α =5, α =5, k=0.5..........................................................................................45
 m c 
 vi Figure 24: M=0.5, α =7, α =4, k=0.03........................................................................................46
 m c Figure 25: M=0.5, α =7, α =4, k=0.05........................................................................................47
 m c Figure 26: M=0.5, α =7, α =4, k=0.1..........................................................................................48
 m c Figure 27: M=0.5, α =3, α =2, k=0.05........................................................................................49
 m c Figure 28: M=0.6, α =7, α =4, k=0.03........................................................................................50
 m c Figure 29: M=0.6, α =7, α =4, k=0.05........................................................................................51
 m c Figure 30: M=0.6, α =7, α =4, k=0.1..........................................................................................52
 m c Figure 31: M=0.6, α =3, α =2, k=0.05........................................................................................53
 m c Figure 32: M=0.7, α =5, α =2, k=0.03........................................................................................54
 m c Figure 33: M=0.7, α =5, α =2, k=0.05........................................................................................55
 m c Figure 34: M=0.7, α =5, α =2, k=0.1..........................................................................................56
 m c Figure 35: M=0.7, α =2, α =1, k=0.05........................................................................................57
 m c Figure 36: Lift Coefficient After Cna and α Modification..................................................60
 0 Figure 37: Effective Separation Point, M=0.3.........................................................................62
 Figure 38: Effective Separation Point, M=0.4.........................................................................63
 Figure 39: Effective Separation Point, M=0.5.........................................................................63
 Figure 40: Effective Separation Point, M=0.6.........................................................................64
 Figure 41: Effective Separation Point, M=0.7.........................................................................64
 Figure 42: Center of Pressure, M=0.3, m=2............................................................................67
 Figure 43: Center of Pressure, M=0.3, m=1............................................................................68
 Figure 44: Center of Pressure, M=0.3, m=0.5........................................................................68
 Figure 45: Center of Pressure, M=0.3, m=4............................................................................69
 Figure 46: Center of Pressure, M=0.4, m=2............................................................................70
 Figure 47: Center of Pressure, M=0.5, m=2............................................................................70
 Figure 48: Center of Pressure, M=0.6, m=2............................................................................71
 Figure 49: Center of Pressure, M=0.7, m=2............................................................................71
 
 vii Figure 50: Post Modification, M=0.3, α =10, α =10, k=0.1.............................................76
 m c Figure 51: Post Modification, M=0.4, α =10, α =10, k=0.1.............................................77
 m c Figure 52: Post Modification, M=0.5, α =7, α =4, k=0.1..................................................78
 m c Figure 53: Post Modification, M=0.6, α =7, α =4, k=0.1..................................................79
 m c Figure 54: Post Modification, M=0.7, α =5, α =2, k=0.1..................................................80
 m c Figure 55: Flow Development, M=0.3, α =10, α =10, k=0.1..........................................82
 m c Figure 56: Flow Development, M=0.7, α =5, α =2, k=0.03.............................................83
 m c Figure 57: Normal Force including Separation, Cnf, M=0.7, α =5, α =2, k=0.1..85
 m c Figure 58: Separation Point, f, M=0.7, α =5, α =2, k=0.1................................................85
 m c Figure 59: Center of Pressure, M=0.7, α =5, α =2, k=0.1...............................................86
 m c Figure 60: Lift, Moment, and Drag Data at M=0.3................................................................91
 Figure 61: Lift, Moment, and Drag Data at M=0.4................................................................92
 Figure 62: Lift, Moment, and Drag Data at M=0.5................................................................93
 Figure 63: Lift, Moment, and Drag Data at M=0.6................................................................94
 Figure 64: Lift, Moment, and Drag Data at M=0.7................................................................95
 Figure 65: Normal force curve slope, M=0.3...........................................................................97
 Figure 66: Effective Separation Point vs. Angle of Attack, M=0.3................................98
 Figure 67: Derivation of S1 Parameter, M=0.3.......................................................................99
 Figure 68: Derivation of S2 Parameter, M=0.3....................................................................100
 Figure 69: Derivation of k , M=0.3.............................................................................................101
 0 Figure 70: Derivation of k constant, M=0.3..........................................................................103
 1 Figure 71: Derivation of k constant, M=0.3..........................................................................103
 2 Figure 72: Derivation of C Coefficient, M=0.3..................................................................105
 n1 Figure 73: Derivation of η Coefficient, M=0.3......................................................................106
 
 viii NOMENCLATURE A1 Leishman-Beddoes constant, 0.3 A2 Leishman-Beddoes constant, 0.7 A3 Leishman-Beddoes constant, 1.5 A4 Leishman-Beddoes constant, -0.5 A5 Leishman-Beddoes constant, 1.0 b1 Leishman-Beddoes constant, 0.14 b2 Leishman-Beddoes constant, 0.53 b3 Leishman-Beddoes constant, 0.25 b4 Leishman-Beddoes constant, 0.1 b5 Leishman-Beddoes constant, 0.5 c Airfoil chord length, ft Cc Coefficient for circulatory component X Cai Coefficient for non-circulatory (impulsive) component due to pitch X € Cqi Coefficient for non-circulatory (impulsive) component due to pitch rate X € Chord force coefficient C C € C Drag force coefficient d € C Skin friction drag coefficient d0 € Lift force coefficient C l C Pitching moment coefficient about quarter-chord m € C Zero-lift pitching moment m0 € 
 ix

Description:
CHAPTER 5: VALIDATION OF THE LEISHMANBEDDOES MODEL. Dynamic Stall Pitching Moment Vortex Convection Time Constant, Tvl .. APPENDIX A: DERIVATION OF LEISHMAN BEDDOES PARAMETERS. turbine analysis program Aerodyn. computation of unsteady aerodynamics common to rotorcraft .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.