ebook img

Modeling and Verification of Ultra-Fast Electro-Mechanical Actuators for HVDC Breakers PDF

147 Pages·2015·7.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and Verification of Ultra-Fast Electro-Mechanical Actuators for HVDC Breakers

Modeling and Verification of Ultra-Fast Electro-Mechanical Actuators for HVDC Breakers ARA BISSAL PhD Thesis Stockholm, Sweden 2015 Electromagnetic Engineering TRITA-EE 2015:010 School of Electrical Engineering, KTH ISSN 1653-5146 SE-100 44 Stockholm ISBN 978-91-7595-480-6 SWEDEN Akademisk avhandlingsommed tillståndav KunglTekniskahögskolanframlägges till offentlig granskning för avläggande av teknologie doktorexamen onsdagen den 22 maj 2015 klockan 10.00 i F3, Kungl Tekniska högskolan, Lindstedtsvägen 26, Stockholm. © Ara Bissal, May 2015 Tryck: Universitetsservice US AB iii Abstract Thecontinuouslyincreasingdemandforcleanrenewableenergyhasrekin- dled interest in multi-terminal high voltage direct current (HVDC) grids. Although such grids have several advantages and a great potential, their materialization has been thwarted dueto the absence of HVDCbreakers. In comparison with traditional alternating current (AC) breakers, they should operate and interrupt fault currents in a time frame of a few milliseconds. Theaimofthisthesisisfocusedonthedesignofultra-fastelectro-mechanical actuator systems suitable for such HVDCbreakers. Initially, holistic multi-physics and hybrid models with different levels of complexity and computation time were developed to simulate the entire switch. These models were validated by laboratory experiments. Following a generalized analysis, in depth investigations involving simulations comple- mented with experiments were carried out on two of the sub-components of the switch: the ultra-fast actuator and the damper. The actuator efficiency, final speed, peak current, and maximum force were explored for different design data. The results show that models with different levels of complexity should be used to model the entire switch based on the magnitude of the impulsive forces. Deformations in the form of bending or elongation may deteriorate the efficiency of the actuator losing as much as 35 %. If that cannot be avoided, then the developed first order hybrid model should be used since it can simulate the behaviour of the mechanical switch with a very good accuracy. Otherwise, a model comprising of an electric circuit coupled to an electromagnetic FEM model with a simple mechanics model, is sufficient. It has been shown that using a housing made of magnetic material such as Permedyn, can boost the efficiency of an actuator by as much as 80 %. In light of further optimizing the ultra-fast actuator, a robust optimization algorithm was developed and parallelized. In total, 20520 FEM models were computed successfully for a total simulation time of 7 weeks. One output from this optimization was that a capacitance of 2mF, a charging voltage of 1100V,and40turnsyieldsthehighestefficiency(15%)ifthedesiredvelocity is between 10m/s and 12m/s. The performed studies on the passive magnetic damper showed that the Halbacharrangementgivesadampingforcethatistwoandahalftimeslarger than oppositely oriented axially magnetized magnets. Furthermore, the 2D optimization model showed that a copper thickness of 1.5mm and an iron tubethat is 2mm thick is the optimum damper configuration. Keywords: Actuators,Armature,Capacitors,Circuitbreakers,Coils,Damp- ing, Eddy currents, Elasticity, Electro-mechanical devices, Electromagnetic forces, Finite element methods, HVDC transmission, Image motion analy- sis, Magnetic domains, Magnetic flux, Magnetic forces, Magnetic materials, Magnets, Thermal analysis. Sammanfattning En ständigt ökande efterfrågan på ren, förnybar energi har återuppväckt intressetförhögspändlikström(HVDC)ielnätmedfleräntvåändstationer. Trots att dessa nät har flera fördelar och en stor potential har förverk- ligandet förhindrats på grund av frånvaron av HVDC-brytare. I jämförelse medenbrytareavväxelström(AC)måsteenHVDC-brytarekunnabrytaen felström inom loppet av ett fåtal millisekunder. Syftetmeddennaavhandlingärinriktatpåutformningenavultrasnabba elektromekaniskaaktuatorsystemsomlämparsigförsådanabrytare.Dessaär baserade på så kallade Thomsonspolar vilka består av en platt spiralformad lindning vilken är kopplad till en uppladdad kondensator som sedan laddas ur genom spolen som därvid alstrar en kraftimpuls. Initialtutveckladesmultifysik-ochhybridmodellermedolikakomplexitet och erforderlig beräkningstid för att simulera dessa aktuatorsystem. Dessavalideradessedanmedlaboratorieexperiment.Däreftergenomfördes eningåendemodelleringsstudie avaktuatorsystemetsingåendekomponenter, den ultrasnabba aktuatorn och magnetiska dämparen. Aktuatorn verknings- grad, sluthastighet, toppström och maximala kraft utforskades bl a för olika designdata. Resultaten visar att modeller av olika grad av komplexitet bör använ- das för att modellera hela aktuatorn beroende på storleken av den alstrade kraftimpulsen. Deformationer i form av böjning eller töjning kan försämra verkningsgraden så mycketsom 35 %. Omdessaeffekterintekanundvikas,bördenfullständigahybridmodellen användaseftersomdenkansimuleraaktuatornsbeteendemedenmycketgod noggrannhet. Annars är en modell bestående av en elektrisk krets med en enkelmekanikmodellkoppladtillenelektromagnetiskFEMmodelltillräcklig. Utförda studier visar att användningav en aktuatorfixtur gjord av mag- netisktmaterial, exempelPermedyn,kanökaverkningsgradenhosaktuatorn med upptill 80 %. Medsyfteattytterligareoptimeradenultrasnabbaaktuatornutvecklades enrobustoptimeringsalgoritmföranvändningavparallellakärnor.Meddenna genomfördes under7veckorstidtotalt 20520 FEM-beräkningar. Ettresultat från denna optimering var att en kapacitans på 2mF, en laddningspänning av 1100V och 40 lindningsvarv ger en högsta verkningsgrad (15%) om den önskade sluthastigheten ligger mellan 10m/s och 12m/s. Genomfördastudieravdenmagnetiskadämparenvisarbl.a.attomdean- vändapermanentmagneternautförsiformavettHalbacharrangemangmedför dettaendämpandekraftsomärtvåochenhalvgångerstörreänommotsatt axiellt orienterad magnetiserade magneter används. Acknowledgements Firstly,Iwouldliketoexpressmygratitudetomysupervisor,Prof. GöranEngdahl, for his guidance, innovative ideas, and numerous comments throughout this PhD thesis. SpecialthanksgoestoProf. RajeevThottappillilforhiscontinuoussupport, and to Dr. Nathaniel Taylor for being one of the reviewers of this thesis. I’d also like to thank Prof. Anders Eriksson, for being my pillar in mechanics. A lot of this thesis work was made possible thanks to the collaborative and fruitful working atmosphere at ABB AB Corporate Research. Therefore, I would like to thank Dr. Mikael Dahlgren and Magnus Backman for trusting in me and giving me the opportunity to work with Dr. Thomas Eriksson, Dr. Ener Salinas, and Dr. Lars Liljestrand. Their advice and guidance was very beneficial especially when it came to answering a lot of my technical questions. I was fortunate to get to meet people like Dr. David Schaeffer, Dr. Zichi Zhang, Stephan Halen, Lars Jonsson, Ola Jeppsson, Dr. Elisabeth Lindell, and Dr. Roberto Alves at ABB AB Corporate Research. In my opinion, a nice working environment strongly depends on the people whom you work with. During my PhDstudies, I alsohad the privilegeof workingatABB DE Corpo- rateResearchin Ladenburg,Germany,for a mobility of six months. I learneda lot fromthisexperienceandhadthechancetoworkwithmanycompetentprofessionals with different backgrounds such as Dr. Octavian Craciun, Dr. Veronica Biagini, Dr. Christian Simonidis, Dr. Jörg Gebhadrt. Also, I would like to thank Dr. Markus Schneider, Wolfgang Waldi, Dr. Guenther Mechler, Dr. Gregor Stengel, Dr. Alexander Horch, and Dr. Ulf Ahrend. Last but not least, I would like to express my gratitude to Dr. Andreas Decker, Dr. Arne Wharburg, Dr. Kim Listmann,Dr. JanSchlake,AndreasSchader,andDietmar PostwithwhomI have had very interesting discussions on the train from Darmstadt to Ladenburg. In general, the hospitality and kindness of all my newfound German colleagues knew no limits. I will always cherishmy time at KTH especially because of outstanding friends such as Dr. Samer Sisha, Dr. Andreas Krings, Dr. Shuang Zhao, Dr. Respi- cius Kiiza, David Fernando Ariza González, Cong-Toan Pham, and Dr. Antonios Antonopoulos. A very special thanks goes to my friend and colleague Jesper Magnusson,with whomI haveworkedthe mostwith throughoutmy PhD.I would also like to thank Peter Lönn not only for his help in IT matters at KTH, but also v vi for his jolly character. IdeeplyappreciatehavinginvaluablefriendslikeRamiBouHadir,HaniDakhil, Joseph Noufaily, Anthony Saliba, and Elie Karaa who have travelled all the way from Lebanon to Sweden to support me for my PhD defense. Iwouldalsoliketothankmysisterforhersweetness,love,andsupport. Special thanksgoestomymotherforsacrificingherlife toraiseandsupportmeeverystep of the way. I hope one day I can make you as proud of me as I am of you. Lastbutcertainlynotleast,IwouldliketothankSilviaLohfinkforherextreme kindness and never ending love. She was like a candle in the midst of darkness, illuminating the countless winter nights I spent writing this PhD thesis. Ara Bissal Stockholm, May 2015 Contents Contents viii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Why HVDC? . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Limitations of Multi-terminal HVDC Grids . . . . . . . . . . 2 1.1.3 HVDC Breakers . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 The Mechanical Switch 9 2.1 Requirements of the Mechanical Switch . . . . . . . . . . . . . . . . 9 2.2 Switch Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Electromagnetic Modeling . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Thermal Modeling . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 Mechanical Modeling . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Model Validations by Experiments . . . . . . . . . . . . . . . . . . . 22 2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Models With Finer Segmentations . . . . . . . . . . . . . . . 32 3 The Ultra-Fast Actuator 35 3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 The Experimental Setups . . . . . . . . . . . . . . . . . . . . 38 3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Sensitivity Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.1 The Electrical Circuit . . . . . . . . . . . . . . . . . . . . . . 44 viii CONTENTS ix 3.4.2 The Magnetic Circuit . . . . . . . . . . . . . . . . . . . . . . 51 3.4.3 The Shape of the Actuator . . . . . . . . . . . . . . . . . . . 59 3.5 Brute Force Optimization . . . . . . . . . . . . . . . . . . . . . . . . 72 3.5.1 Setup of the optimization model . . . . . . . . . . . . . . . . 74 3.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 75 4 The Composite Magnetic Damper 97 4.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.1 Static modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.2 Transient Modeling. . . . . . . . . . . . . . . . . . . . . . . . 99 4.5 Model and Concept Verification . . . . . . . . . . . . . . . . . . . . . 100 4.5.1 Small Scale Prototypes. . . . . . . . . . . . . . . . . . . . . . 100 4.5.2 Large Scale Prototype . . . . . . . . . . . . . . . . . . . . . . 103 4.6 Optimal Damper Design . . . . . . . . . . . . . . . . . . . . . . . . . 105 5 Conclusions and Future Work 111 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 A Math Operators 113 B Symbols and Acronyms 115 Bibliography 119 List of Figures 128

Description:
3.3 Experimental Validation . 4.5 Model and Concept Verification . C. Chen, A. Bissal, E. Salinas, “Numerical Modeling and Experimental .. the determinant of F. In Eq. 2.21, ρ0 is the density of the reference material and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.