ebook img

Modeling and Simulation of Systems Using MATLAB and Simulink PDF

2010·14.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and Simulation of Systems Using MATLAB and Simulink

Cover Page: 1 Half Title Page: 2 Title Page Page: 3 Copyright Page Page: 4 Dedication Page: 5 Table of Contents Page: 6 Preface Page: 9 Supplementary Resources Disclaimer Page: 10 Acknowledgments Page: 11 Author Page: 12 1. Introduction to Systems Page: 13 1.1 System Page: 13 1.1.1 System Boundary Page: 13 1.1.2 System Components and Their Interactions Page: 14 1.1.3 Environment Page: 14 1.2 Classification of Systems Page: 14 1.2.1 According to the Time Frame Page: 14 1.2.2 According to the Complexity of the System Page: 15 1.2.3 According to the Interactions Page: 15 1.2.4 According to the Nature and Type of Components Page: 15 1.2.5 According to the Uncertainties Involved Page: 15 1.2.5.1 Static vs. Dynamic Systems Page: 15 1.2.5.2 Linear vs. Nonlinear Systems Page: 15 1.3 Linear Systems Page: 16 1.3.1 Superposition Theorem Page: 16 1.3.2 Homogeneity Page: 16 1.3.3 Mathematical Viewpoint of a Linear System Page: 16 1.3.3.1 Linear Differential Equation Page: 16 1.3.3.2 Nonlinear Differential Equations Page: 16 1.4 Time-Varying vs. Time-Invariant Systems Page: 17 1.5 Lumped vs. Distributed Parameter Systems Page: 17 1.6 Continuous-Time and Discrete-Time Systems Page: 17 1.7 Deterministic vs. Stochastic Systems Page: 17 1.7.1 Complexity of Systems Page: 18 1.8 Hard and Soft Systems Page: 18 1.9 Analysis of Systems Page: 18 1.10 Synthesis of Systems Page: 18 1.11 Introduction to System Philosophy Page: 18 1.11.1 Method of Science Page: 19 1.11.1.1 Reductionism Page: 19 1.11.1.2 Repeatability Page: 19 1.11.1.3 Refutation Page: 20 1.11.2 Problems of Science and Emergence of System Page: 20 1.12 System Thinking Page: 20 1.13 Large and Complex Applied System Engineering: A Generic Modeling Page: 21 1.14 Review Questions Page: 24 1.15 Bibliographical Notes Page: 24 2. Systems Modeling Page: 25 2.1 Introduction Page: 25 2.2 Need of System Modeling Page: 26 2.3 Modeling Methods for Complex Systems Page: 26 2.4 Classification of Models Page: 26 2.4.1 Physical vs. Abstract Model Page: 26 2.4.2 Mathematical vs. Descriptive Model Page: 27 2.4.3 Static vs. Dynamic Model Page: 27 2.4.4 Steady State vs. Transient Model Page: 27 2.4.5 Open vs. Feedback Model Page: 27 2.4.6 Deterministic vs. Stochastic Models Page: 27 2.4.7 Continuous vs. Discrete Models Page: 27 2.5 Characteristics of Models Page: 27 2.6 Modeling Page: 27 2.6.1 Fundamental Axiom (Modeling Hypothesis) Page: 28 2.6.2 Component Postulate (First Postulate) Page: 28 2.6.3 Model Evaluation Page: 28 2.6.4 Generic Description of Two-Terminal Components Page: 28 2.6.4.1 Dissipater Type Components Page: 29 2.6.4.2 Delay Type Elements Page: 29 2.6.4.3 Accumulator Type Page: 29 2.6.4.4 Sources or Drivers Page: 29 2.7 Mathematical Modeling of Physical Systems Page: 29 2.7.1 Modeling of Mechanical Systems Page: 30 2.7.1.1 Translational Mechanical Systems Page: 30 2.7.1.2 Rotational Mechanical Systems Page: 33 2.7.2 Modeling of Electrical Systems Page: 36 2.7.3 Modeling of Electromechanical Systems Page: 37 2.7.4 Modeling of Fluid Systems Page: 37 2.7.4.1 Hydraulic Systems Page: 37 2.7.5 Modeling of Thermal Systems Page: 38 2.8 Review Questions Page: 39 2.9 Bibliographical Notes Page: 40 3. Formulation of State Space Model of Systems Page: 41 3.1 Physical Systems Theory Page: 41 3.2 System Components and Interconnections Page: 41 3.3 Computation of Parameters of a Component Page: 42 3.4 Single Port and Multiport Systems Page: 43 3.4.1 Linear Perfect Couplers Page: 43 3.4.2 Summary of Two-Terminal and Multiterminal Components Page: 43 3.4.3 Multiterminal Components Page: 43 3.5 Techniques of System Analysis Page: 43 3.5.1 Lagrangian Technique Page: 43 3.5.2 Free Body Diagram Method Page: 44 3.5.3 Linear Graph Theoretic Approach Page: 44 3.6 Basics of Linear Graph Theoretic Approach Page: 44 3.7 Formulation of System Model for Conceptual System Page: 45 3.7.1 Fundamental Axioms Page: 45 3.7.2 Component Postulate Page: 45 3.7.3 System Postulate Page: 45 3.7.3.1 Cutset Postulate Page: 45 3.7.3.2 Circuit Postulate Page: 46 3.8 Formulation of System Model for Physical Systems Page: 47 3.9 Topological Restrictions Page: 48 3.9.1 Perfect Coupler Page: 48 3.9.2 Gyrator Page: 48 3.9.3 Short Circuit Element (“A” Type) Page: 48 3.9.4 Open Circuit Element (“B” Type) Page: 48 3.9.5 Dissipater Type Elements Page: 48 3.9.6 Delay Type Elements Page: 48 3.9.7 Accumulator Type Elements Page: 48 3.9.8 Across Drivers Page: 48 3.9.9 Through Drivers Page: 48 3.10 Development of State Model of Degenerative System Page: 51 3.10.1 Development of State Model for Degenerate System Page: 51 3.10.2 Symbolic Formulation of State Model for Nondegenerative Systems Page: 52 3.10.3 State Model of System with Multiterminal Components Page: 53 3.10.4 State Model for Systems with Time Varying and Nonlinear Components Page: 54 3.11 Solution of State Equations Page: 55 3.12 Controllability Page: 57 3.13 Observability Page: 57 3.14 Sensitivity Page: 57 3.15 Liapunov Stability Page: 58 3.16 Performance Characteristics of Linear Time Invariant Systems Page: 58 3.17 Formulation of State Space Model Using Computer Program (SYSMO) Page: 59 3.17.1 Preparation of the Input Data Page: 59 3.17.2 Algorithm for the Formulation of State Equations Page: 59 3.18 Review Questions Page: 59 3.19 Bibliographical Notes Page: 61 4. Model Order Reduction Page: 62 4.1 Introduction Page: 62 4.2 Difference between Model Simplification and Model Order Reduction Page: 62 4.3 Need for Model Order Reduction Page: 63 4.4 Principle of Model Order Reduction Page: 63 4.5 Methods of Model Order Reduction Page: 63 4.5.1 Time Domain Simplification Techniques Page: 64 4.5.1.1 Dominant Eigenvalue Approach Page: 64 4.5.1.2 Aggregation Method Page: 65 4.5.1.3 Subspace Projection Method Page: 65 4.5.1.4 Optimal Order Reduction Page: 65 4.5.1.5 Hankel Matrix Approach Page: 66 4.5.1.6 Hankel–Norm Model Order Reduction Page: 66 4.5.2 Model Order Reduction in Frequency Domain Page: 66 4.5.2.1 Pade Approximation Method Page: 66 4.5.2.2 Continued Fraction Expansion Page: 66 4.5.2.3 Moment-Matching Method Page: 66 4.5.2.4 Balanced Realization-Based Reduction Method Page: 66 4.5.2.5 Balanced Truncation Page: 67 4.5.2.6 Frequency-Weighted Balanced Model Reduction Page: 69 4.5.2.7 Time Moment Matching Page: 70 4.5.2.8 Continued Fraction Expansion Page: 71 4.5.2.9 Model Order Reduction Based on the Routh Stability Criterion Page: 73 4.5.2.10 Differentiation Method for Model Order Reduction Page: 73 4.6 Applications of Reduced-Order Models Page: 75 4.7 Review Questions Page: 75 4.8 Bibliographical Notes Page: 75 5. Analogous of Linear Systems Page: 76 5.1 Introduction Page: 76 5.1.1 D’Alembert’s Principle Page: 76 5.2 Force–Voltage (f–v) Analogy Page: 76 5.2.1 Rule for Drawing f–v Analogous Electrical Circuits Page: 76 5.3 Force–Current (f–i) Analogy Page: 76 5.3.1 Rule for Drawing f–i Analogous Electrical Circuits Page: 76 5.4 Review Questions Page: 79 6. Interpretive Structural Modeling Page: 80 6.1 Introduction Page: 80 6.2 Graph Theory Page: 80 6.2.1 Net Page: 81 6.2.2 Loop Page: 81 6.2.3 Cycle Page: 81 6.2.4 Parallel Lines Page: 81 6.2.5 Properties of Relations Page: 81 6.3 Interpretive Structural Modeling Page: 81 6.4 Review Questions Page: 84 6.5 Bibliographical Notes Page: 84 7. System Dynamics Techniques Page: 85 7.1 Introduction Page: 85 7.2 System Dynamics of Managerial and Socioeconomic System Page: 85 7.2.1 Counterintuitive Nature of System Dynamics Page: 85 7.2.2 Nonlinearity Page: 85 7.2.3 Dynamics Page: 85 7.2.4 Causality Page: 85 7.2.5 Endogenous Behavior Page: 85 7.3 Traditional Management Page: 85 7.3.1 Strength of the Human Mind Page: 85 7.3.2 Limitation of the Human Mind Page: 85 7.4 Sources of Information Page: 85 7.4.1 Mental Database Page: 85 7.4.2 Written/Spoken Database Page: 86 7.4.3 Numerical Database Page: 86 7.5 Strength of System Dynamics Page: 86 7.6 Experimental Approach to System Analysis Page: 87 7.7 System Dynamics Technique Page: 87 7.8 Structure of a System Dynamic Model Page: 87 7.9 Basic Structure of System Dynamics Models Page: 87 7.9.1 Level Variables Page: 87 7.9.2 Flow-Rate Variables Page: 87 7.9.3 Decision Function Page: 87 7.10 Different Types of Equations Used in System Dynamics Techniques Page: 89 7.10.1 Level Equation Page: 89 7.10.2 Rate Equation (Decision Functions) Page: 90 7.10.3 Auxiliary Equations Page: 90 7.11 Symbol Used in Flow Diagrams Page: 90 7.11.1 Levels Page: 90 7.11.2 Source and Sinks Page: 90 7.11.3 Information Takeoff Page: 90 7.11.4 Auxiliary Variables Page: 91 7.11.5 Parameters (Constants) Page: 91 7.12 Dynamo Equations Page: 91 7.13 Modeling and Simulation of Parachute Deceleration Device Page: 96 7.13.1 Parachute Inflation Page: 97 7.13.2 Canopy Stress Distribution Page: 97 7.13.3 Modeling and Simulation of Parachute Trajectory Page: 97 7.14 Modeling of Heat Generated in a Parachute during Deployment Page: 98 7.14.1 Dynamo Equations Page: 98 7.15 Modeling of Stanchion System of Aircraft Arrester Barrier System Page: 98 7.15.1 Modeling and Simulation of Forces Acting on Stanchion System Using System Dynamic Technique Page: 99 7.15.2 Dynamic Model Page: 100 7.15.3 Results Page: 100 7.16 Review Questions Page: 100 7.17 Bibliographical Notes Page: 101 8. Simulation Page: 102 8.1 Introduction Page: 102 8.2 Advantages of Simulation Page: 102 8.3 When to Use Simulations Page: 103 8.4 Simulation Provides Page: 103 8.5 How Simulations Improve Analysis and Decision Making? Page: 103 8.6 Application of Simulation Page: 103 8.7 Numerical Methods for Simulation Page: 103 8.7.1 The Rectangle Rule Page: 103 8.7.2 The Trapezoid and Tangent Formulae Page: 103 8.7.3 Simpson’s Rule Page: 104 8.7.4 One-Step Euler’s Method Page: 104 8.7.5 Runge–Kutta Methods of Integration Page: 105 8.7.5.1 Physical Interpretation Page: 105 8.7.6 Runge–Kutta Fourth-Order Method Page: 105 8.7.7 Adams–Bashforth Predictor Method Page: 105 8.7.8 Adams–Moulton Corrector Method Page: 106 8.8 The Characteristics of Numerical Methods Page: 106 8.9 Comparison of Different Numerical Methods Page: 106 8.10 Errors during Simulation with Numerical Methods Page: 106 8.10.1 Truncation Error Page: 106 8.10.2 Round Off Error Page: 106 8.10.3 Step Size vs. Error Page: 107 8.10.4 Discretization Error Page: 107 8.11 Review Questions Page: 110 9. Nonlinear and Chaotic System Page: 111 9.1 Introduction Page: 111 9.2 Linear vs. Nonlinear System Page: 111 9.3 Types of Nonlinearities Page: 111 9.4 Nonlinearities in Flight Control of Aircraft Page: 111 9.4.1 Basic Control Surfaces Used in Aircraft Maneuvers Page: 112 9.4.2 Principle of Flight Controls Page: 112 9.4.3 Components Used in Pitch Control Page: 112 9.4.4 Modeling of Various Components of Pitch Control System Page: 112 9.4.5 Simulink Model of Pitch Control in Flight Page: 113 9.4.5.1 Simulink Model of Pitch Control in Flight Using Nonlinearities Page: 113 9.4.6 Study of Effects of Different Nonlinearities on Behavior of the Pitch Control Model Page: 113 9.4.6.1 Effects of Dead-Zone Nonlinearities Page: 113 9.4.6.2 Effects of Saturation Nonlinearities Page: 113 9.4.6.3 Effects of Backlash Nonlinearities Page: 113 9.4.6.4 Cumulative Effects of Backlash, Saturation, Dead-Zone Nonlinearities Page: 113 9.4.7 Designing a PID Controller for Pitch Control in Flight Page: 113 9.4.7.1 Designing a PID Controller for Pitch Control in Flight with the Help of Root Locus Method (Feedback Compensation) Page: 113 9.4.7.2 Designing a PID Controller (Connected in Cascade with the System) for Pitch Control in Flight Page: 114 9.4.7.3 Design of P, I, D, PD, PI, PID, and Fuzzy Controllers Page: 115 9.4.8 Design of Fuzzy Controller Page: 115 9.4.8.1 Basic Structure of a Fuzzy Controller Page: 115 9.4.8.2 The Components of a Fuzzy System Page: 115 9.4.9 Tuning Fuzzy Controller Page: 116 9.5 Conclusions Page: 117 9.6 Introduction to Chaotic System Page: 117 9.6.1 General Meaning Page: 117 9.6.2 Scientific Meaning Page: 117 9.6.3 Definition Page: 118 9.7 Historical Prospective Page: 118 9.8 First-Order Continuous-Time System Page: 118 9.9 Bifurcations Page: 119 9.9.1 Saddle Node Bifurcation Page: 119 9.9.2 Transcritical Bifurcation Page: 120 9.9.3 Pitchfork Bifurcation Page: 120 9.9.3.1 Supercritical Pitchfork Bifurcation Page: 120 9.9.4 Catastrophes Page: 120 9.9.4.1 Globally Attracting Point for Stability Page: 120 9.10 Second-Order System Page: 121 9.11 Third-Order System Page: 121 9.11.1 Lorenz Equation: A Chaotic Water Wheel Page: 122 9.12 Review Questions Page: 122 9.13 Bibliographical Notes Page: 122 10. Modeling with Artificial Neural Network Page: 123 10.1 Introduction Page: 123 10.1.1 Biological Neuron Page: 123 10.1.2 Artificial Neuron Page: 123 10.2 Artificial Neural Networks Page: 123 10.2.1 Training Phase Page: 123 10.2.1.1 Selection of Neuron Characteristics Page: 123 10.2.1.2 Selection of Topology Page: 124 10.2.1.3 Error Minimization Process Page: 124 10.2.1.4 Selection of Training Pattern and Preprocessing Page: 124 10.2.1.5 Stopping Criteria of Training Page: 124 10.2.2 Testing Phase Page: 124 10.2.2.1 ANN Model Page: 124 10.2.2.2 Building ANN Model Page: 124 10.2.2.3 Backpropagation Page: 125 10.2.2.4 Training Algorithm Page: 125 10.2.2.5 Applications of Neural Network Modeling Page: 125 10.3 Review Questions Page: 127 11. Modeling Using Fuzzy Systems Page: 129 11.1 Introduction Page: 129 11.2 Fuzzy Sets Page: 129 11.3 Features of Fuzzy Sets Page: 130 11.4 Operations on Fuzzy Sets Page: 130 11.4.1 Fuzzy Intersection Page: 130 11.4.2 Fuzzy Union Page: 130 11.4.3 Fuzzy Complement Page: 130 11.4.4 Fuzzy Concentration Page: 130 11.4.5 Fuzzy Dilation Page: 131 11.4.6 Fuzzy Intensification Page: 131 11.4.7 Bounded Sum Page: 131 11.4.8 Strong α-Cut Page: 131 11.4.9 Linguistic Hedges Page: 131 11.5 Characteristics of Fuzzy Sets Page: 132 11.5.1 Normal Fuzzy Set Page: 132 11.5.2 Convex Fuzzy Set Page: 132 11.5.3 Fuzzy Singleton Page: 132 11.5.4 Cardinality Page: 132 11.6 Properties of Fuzzy Sets Page: 132 11.7 Fuzzy Cartesian Product Page: 132 11.8 Fuzzy Relation Page: 132 11.9 Approximate Reasoning Page: 133 11.10 Defuzzification Methods Page: 135 11.11 Introduction to Fuzzy Rule-Based Systems Page: 135 11.12 Applications of Fuzzy Systems to System Modeling Page: 136 11.12.1 Single Input Single Output Systems Page: 137 11.12.2 Multiple Input Single Output Systems Page: 137 11.12.3 Multiple Input Multiple Output Systems Page: 137 11.13 Takagi–Sugeno–Kang Fuzzy Models Page: 138 11.14 Adaptive Neuro-Fuzzy Inferencing Systems Page: 138 11.15 Steady State DC Machine Model Page: 140 11.16 Transient Model of a DC Machine Page: 141 11.17 Fuzzy System Applications for Operations Research Page: 144 11.18 Review Questions Page: 146 11.19 Bibliography and Historical Notes Page: 146 12. Discrete-Event Modeling and Simulation Page: 147 12.1 Introduction Page: 147 12.2 Some Important Definitions Page: 148 12.3 Queuing System Page: 148 12.4 Discrete-Event System Simulation Page: 148 12.5 Components of Discrete-Event System Simulation Page: 148 12.6 Input Data Modeling Page: 149 12.7 Family of Distributions for Input Data Page: 149 12.8 Random Number Generation Page: 149 12.8.1 Uniform Distribution Page: 149 12.8.2 Gaussian Distribution of Random Number Generation Page: 150 12.9 Chi-Square Test Page: 150 12.10 Kolomogrov–Smirnov Test Page: 150 12.11 Review Questions Page: 150 Appendix A Page: 151 A.1 What Is MATLAB®? Page: 151 A.2 Learning MATLAB Page: 151 A.3 The MATLAB System Page: 151 A.3.1 Development Environment Page: 151 A.3.2 The MATLAB Mathematical Function Library Page: 151 A.3.3 The MATLAB Language Page: 151 A.3.4 Handle Graphics Page: 151 A.3.5 The MATLAB Application Program Interface (API) Page: 151 A.4 Starting and Quitting MATLAB Page: 151 A.5 MATLAB Desktop Page: 151 A.6 Desktop Tools Page: 151 A.6.1 Command Window Page: 151 A.6.2 Command History Page: 151 A.6.2.1 Running External Programs Page: 151 A.6.2.2 Launch Pad Page: 152 A.6.2.3 Help Browser Page: 152 A.6.2.4 Current Directory Browser Page: 152 A.6.2.5 Workspace Browser Page: 152 A.6.2.6 Array Editor Page: 152 A.6.2.7 Editor/Debugger Page: 152 A.6.2.8 Other Development Environment Features Page: 152 A.7 Entering Matrices Page: 152 A.8 Subscripts Page: 153 A.9 The Colon Operator Page: 153 A.10 The Magic Function Page: 153 A.11 Expressions Page: 153 A.11.1 Variables Page: 153 A.11.2 Numbers Page: 153 A.11.3 Operators Page: 154 A.11.4 Functions Page: 154 A.11.4.1 Generating Matrices Page: 154 A.12 The Load Command Page: 154 A.13 The Format Command Page: 154 A.14 Suppressing Output Page: 155 A.15 Entering Long Command Lines Page: 155 A.16 Basic Plotting Page: 155 A.16.1 Creating a Plot Page: 155 A.16.2 Multiple Data Sets in One Graph Page: 155 A.16.3 Plotting Lines and Markers Page: 155 A.16.4 Adding Plots to an Existing Graph Page: 155 A.16.5 Multiple Plots in One Figure Page: 155 A.16.6 Setting Grid Lines Page: 155 A.16.7 Axis Labels and Titles Page: 155 A.16.8 Saving a Figure Page: 155 A.16.9 Mesh and Surface Plots Page: 155 A.17 Images Page: 156 A.18 Handle Graphics Page: 156 A.18.1 Setting Properties from Plotting Commands Page: 156 A.18.2 Different Types of Graphs Page: 156 A.18.2.1 Bar and Area Graphs Page: 156 A.19 Animations Page: 157 A.20 Creating Movies Page: 157 A.21 Flow Control Page: 157 A.21.1 If Page: 157 A.21.2 Switch and Case Page: 158 A.21.2.1 For Page: 158 A.21.2.2 While Page: 158 A.21.2.3 Continue Page: 158 A.21.2.4 Break Page: 158 A.22 Other Data Structures Page: 158 A.22.1 Multidimensional Arrays Page: 158 A.22.2 Cell Arrays Page: 159 A.22.3 Characters and Text Page: 159 A.23 Scripts and Functions Page: 160 A.23.1 Scripts Page: 160 A.23.2 Functions Page: 160 A.23.2.1 Global Variables Page: 160 A.23.2.2 Passing String Arguments to Functions Page: 161 A.23.2.3 Constructing String Arguments in Code Page: 161 A.23.2.4 A Cautionary Note Page: 161 A.23.2.5 The Eval Function Page: 161 A.23.2.6 Vectorization Page: 161 A.23.2.7 Preallocation Page: 161 A.23.2.8 Function Handles Page: 161 A.23.2.9 Function Functions Page: 161 Appendix B: Simulink Page: 163 B.1 Introduction Page: 163 B.2 Features of Simulink Page: 163 B.3 Simulation Parameters and Solvers Page: 163 B.4 Construction of Block Diagram Page: 163 B.5 Review Questions Page: 163 Appendix C: Glossary Page: 164 C.1 Modeling and Simulation Page: 164 C.2 Artificial Neural Network Page: 167 C.3 Fuzzy Systems Page: 168 C.4 Genetic Algorithms Page: 169 Bibliography Page: 169 Index Page: 177

Description:
Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniques presented. After introducing the underlying philosophy of systems, the book offers step-by-step procedures for modeling different types of systems using modeling techniques, such as the graph-theoretic approach, interpretive structural modeling, and system dynamics modeling. It then explores how simulation evolved from pre-computer days into the current science of today. The text also presents modern soft computing techniques, including artificial neural networks, fuzzy systems, and genetic algorithms, for modeling and simulating complex and nonlinear systems. The final chapter addresses discrete systems modeling. Preparing both undergraduate and graduate students for advanced modeling and simulation courses, this text helps them carry out effective simulation studies. In addition, graduate students should be able to comprehend and conduct simulation research after completing this book.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.