ebook img

modeling and design strategy of online advertising ecosystem PDF

110 Pages·2017·1.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview modeling and design strategy of online advertising ecosystem

Clemson University TigerPrints All Theses Theses 8-2014 MODELING AND DESIGN STRATEGY OF ONLINE ADVERTISING ECOSYSTEM Qiuchen Wang Clemson University, [email protected] Follow this and additional works at:https://tigerprints.clemson.edu/all_theses Part of theMechanical Engineering Commons Recommended Citation Wang, Qiuchen, "MODELING AND DESIGN STRATEGY OF ONLINE ADVERTISING ECOSYSTEM" (2014).All Theses. 1853. https://tigerprints.clemson.edu/all_theses/1853 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please [email protected]. MODELING AND DESIGN STRATEGY OF ONLINE ADVERTISING ECOSYSTEM AThesis Presentedto theGraduateSchoolof ClemsonUniversity InPartialFulfillment oftheRequirementsfortheDegree MasterofScience MechanicalEngineering by QiuchenWang August2014 Acceptedby: Dr. Yue(Sophie)Wang,CommitteeChair Dr. JohnWagner Dr. HaiyingShen Abstract The aim of this thesis is to develop an analytical framework to model a large-scale complexonlineadvertisingnetwork. Duetothelargeincreasingannualrevenuesofglobal onlineadvertisingindustryinrecentyears,agents’behaviorsinonlineadvertisingnetworks haverecentlyreceivedattentionasanimportantareaofresearch. Forthisreasonwedecided to purpose a framework, with the aim of identifying and investigating the agents’ (users, advertisers)interactionandinfluenceintheonlineadvertisingecosystem. Thisthesisfirstintroducesthebackgroundandstructureofonlineadvertisingecosys- tem. In a detailed central section the replicator-mutator (RM) dynamics of users’ and ad- vertisers’ behaviors are proposed. Three adaptions to users’ RM dynamics for testing the users’ behaviors are undertaken. Finally, the framework is applied to a real online ad- vertising ecosystem, within a three-stage testing phase. At the end of each stage the RM dynamicsarefine-tuned,andexperimentresultsarechartedeverystage. The results of the experiment show that the analytical framework is well suited to revealing the agents’ interaction and their allocating strategies. Specific analyses of two advertisers are highlighted and two examples about targeting users are also explained. We recommendfurthermodificationtotheframeworkistodevelopanumericalanalysismodel thatintegratesadvertisers’criticalstage. ii Dedication Iwouldliketodedicatethisworktomyparentsfortheirconstantloveandsupport, andtomyfriendsfortheirunwaveringinspirationandencouragement. iii Acknowledgments First and foremost, I would like to thank my advisor, Dr. Yue (Sophie) Wang, for givingmetheopportunitiestolearnsystemscontrolsandperformrelatedexperiments. Dr. Wang gave me much help and advices on research. Her knowledge, guidance, and advice helped me in more ways than words can describe. I am greatly indebted to my advisor for all of her support, and hope to keep in touch with her for years to come. I would like to thank my advisory committee members Dr. Helen Shen and Dr. John Wagner for their technicalexpertiseandadvice. I also want to thank my lab mates in the Interdisciplinary Intelligence Research (I2R) Laboratory, namely, Hamed Saeidi, Behzad Sadrfaridpour, David Adam Spencer. They gave me strong support in conducting experiments and simulations, as well as their generoushelp. I’dliketothankpeersinPervasiveCommunicationsLaboratoryofelectrical and computer engineering department for helping us with data crawling. Thank you for bringingfunandlaughtoourlaboratorylife. iv Table of Contents TitlePage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 BackgroundofOnlineAdvertisement . . . . . . . . . . . . . . . . . . . . 1 1.2 OnlineAdvertisingEcosystem . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Replicator-MutatorDynamics . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 StructureofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 ProblemScenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 EvolutionaryDynamicsforUsers . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 EvolutionaryDynamicsforAdvertisers . . . . . . . . . . . . . . . . . . . . 21 2.4 ToyProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 DataCrawlingAndModelValidation . . . . . . . . . . . . . . . . . . . . . . 33 3.1 FourMainParametersinRMDynamics . . . . . . . . . . . . . . . . . . . 35 3.2 DataCrawlingMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 DesignofAdvertisingStrategy . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1 CasesDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 StrategyDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 v TABLEOFCONTENTS 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 vi List of Tables 2.1 Notationsusedinuser’sdynamics . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Notationusedinadvertisers’dynamics . . . . . . . . . . . . . . . . . . . . 22 3.1 RankingplacesforeachadvertiserduringtimeperiodFeb28th-March18th. 58 vii List of Figures 1.1 Revenuetrendofadvertisingmarket . . . . . . . . . . . . . . . . . . . . . 2 1.2 Structureofonlineadvertisingecosystem . . . . . . . . . . . . . . . . . . 5 1.3 Sponsored search advertisement in response to the keyword search “rental car” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Brandingadvertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Contextualadvertisements . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Relationshipofusers,advertisers,theintegratedpublisherandadexchange intheourmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Allocationratioofuserr ,u=1,···,100,foradvertisers ands intheon- u 1 2 line advertisting ecosystem. Users prefer advertiser 1 instead of advertiser 2 based on the following setting parameters: random initial condition state x1(0)∈[0,1], x2(0)∈[0,1]; preference element au >au in users’ prefer- 12 21 encematrixAu withsmalldifferentnumericalvaluesofmutationparameter. 26 2.3 Users’ belief: Allocation ratio of advertisers with bidding results from 1st to 3rd ranking place: Advertiser 2, Advertiser 1, Advertiser 3 based only onusers’beliefandpreference. . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Users’belief: Allocationratioof100userswhohavethesimilarindividual preference(preferencematrix)tothe1stadvertiser. . . . . . . . . . . . . . 29 2.5 Advertisers’ influence: Allocation ratio of advertisers with bidding result from1stto3rdrankingplace: Advertiser2,Advertiser1,Advertiser3. . . . 30 2.6 Advertisers’influence: Allocationratioofuserswhohavenopreferenceto anyadvertisersintheonlineadvertisingecosystem. . . . . . . . . . . . . . 31 2.7 RMdynamics: Allocationratioofadvertiserstotheadvertisementplaces. . 31 2.8 RMdynamic: Allocationratioofuserstothedifferentadvertisers. . . . . . 32 3.1 Product’sratingsandcommentsgivenbytheusersinAmazon. . . . . . . . 36 3.2 Final allocation ratio of each user r ,u = 1,···,4 to advertiser s in the u 1 online advertising ecosystem. Each user has a different hierarchy parame- ters λ =1.0,λ =2.0,λ =3.0. All users have the same initial condition, 2 3 4 preferencematrixandmutationparameter. . . . . . . . . . . . . . . . . . 37 viii LISTOFFIGURES 3.3 Final allocation ratio of each user r ,u=1,···,4 to advertiser s over ad- u 1 vertiser s in the online advertising ecosystem in response to increasing 2 preferenceelementsa1 ,a2 ,a3 ,a4 from5to40. Allusershavethesame 12 12 12 12 initialcondition,hierarchyparameterandmutationparameter. . . . . . . . 39 3.4 Final allocation ratio of each user r ,u = 1,···,4 for advertiser s in the u 1 onlineadvertisingecosystemwithdifferentinitialconditions. . . . . . . . . 41 3.5 Final allocation ratio of each user r ,u = 1,···,4 for advertiser s in the u 1 online advertising ecosystem with changing users’ preference element of advertiser1from3to30. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.6 Final allocation ratio for advertiser s and s to 2nd ranking place in the 1 2 onlineadvertisingecosystemwithdifferentpreferencematrices. Increasing the preference element of advertiser 1 towards 2nd ranking place over 1st rankingplacefrom1to15,i.e.,au ∈[1,15]. . . . . . . . . . . . . . . . . . 45 12 3.7 Allocationratioforadvertisers ands intheonlineadvertisingecosystem 1 2 withinitialconditiony1(0)=[0.1 0.9],y2(0)=[0.9 0.1]. . . . . . . . . 47 3.8 Allocationratioforadvertisers ands intheonlineadvertisingecosystem 1 2 withinitialconditiony1(0)=[0.5 0.5],y2(0)=[0.5 0.5]. . . . . . . . . 48 3.9 Finalallocationratioforadvertisers ands intheonlineadvertisingecosys- 1 2 temwithchangingvaluesofmutationparametertosecondrankingplace. . 49 3.10 Reviewandcommentleftbyusers . . . . . . . . . . . . . . . . . . . . . . 51 3.11 Numbersoffeedbackratinggivenbyuserstothecertainadvertiser . . . . . 52 3.12 2014TabletRankingandComparison . . . . . . . . . . . . . . . . . . . . 53 3.13 ChangeofrankingplacesfromFeb28thtoMarch18th . . . . . . . . . . . 54 3.14 ChangeofsalesvolumefromFeb28thtoMarch18th . . . . . . . . . . . . 54 3.15 Relationship between sales volume and ranking place changes from Feb 28thtoMarch18th. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.16 FirstStage: AllocationratioofadvertisersAsus,Apple,SamsungandKin- dletotheadvertisementplaces. . . . . . . . . . . . . . . . . . . . . . . . . 60 3.17 FirstStage: Allocationratioof160userstothe4advertisers. . . . . . . . . 61 3.18 Second Stage: Allocation ratio of advertisers Asus, Apple, Samsung and Kindletotheadvertisementplaces. . . . . . . . . . . . . . . . . . . . . . . 63 3.19 SecondStage: Allocationratioof160userstothe4advertisers. . . . . . . . 63 3.20 Third Stage: Allocation ratio of advertisers Asus, Apple, Samsung and Kindletotheadvertisementplaces. . . . . . . . . . . . . . . . . . . . . . . 65 3.21 ThirdStage: Allocationratioof160userstothe4advertisers. . . . . . . . 66 4.1 Keyagentsofmarketingstrategyformulation . . . . . . . . . . . . . . . . 68 ix

Description:
The aim of this thesis is to develop an analytical framework to model a large-scale complex online advertising network. Due to the large increasing annual revenues of global online advertising industry in recent years, agents' behaviors in online advertising networks have recently received attentio
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.