ebook img

Modeling, Analysis, and Control of a Hypersonic Vehicle With Significant Aero-Thermo-Elastic ... PDF

207 Pages·2010·6.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling, Analysis, and Control of a Hypersonic Vehicle With Significant Aero-Thermo-Elastic ...

Modeling,Analysis,andControl ofaHypersonicVehicleWith Significant Aero-Thermo-Elastic-PropulsionInteractions, and PropulsiveUncertainty by AkshayShashikumarKorad AThesisPresented inPartial Fulfillment oftheRequirements fortheDegree MasterofScience ARIZONA STATEUNIVERSITY May2010 Modeling,Analysis,andControl ofaHypersonicVehicleWith Significant Aero-Thermo-Elastic-PropulsionInteractions, and PropulsiveUncertainty by AkshayShashikumarKorad hasbeen approved April2010 GraduateSupervisoryCommittee: Armando A.Rodriguez, Chair KonstantinosS. Tsakalis ValanaL. Wells ACCEPTED BY THE GRADUATE COLLEGE ABSTRACT Thisthesisexaminesthemodeling,analysis,andcontrolsystemdesignissuesforscram- jetpowered hypersonicvehicles. Anonlinearthreedegreesoffreedom longitudinalmodel which includes aero-propulsion-elasticity effects was used for all analysis. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fi- delitycomputationalfluiddynamicsandfiniteelementmethodsareneededformoreprecise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicles static and dynamic characteristics over the vehicles trimmable region. The vehiclehas significant longitudinalcouplingbetween thefuel equivalencyratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitchwere assumedtobeavailableforfeedback. Propulsion system design issues were given special consideration. The impact of en- gine characteristics (design) and plume model on control system design were addressed. Various engine designs were considered for comparison purpose. With accurate plume modeling, effective coupling from the FER to the FPA was increased, which made the peak frequency-dependent (singular value) conditioning of the two-input two-output plant (FER-elevator to speed-FPA) worse. This forced the control designer to trade off desir- able (performance/robustness) properties between the plant input and output. For the ve- hicle under consideration (with a very aggressive engine and significant coupling), it has been observed that a large FPA settling time is needed in order to obtain reasonable (per- formance/robustness) properties at the plant input. Ideas for alleviating this fundamental tradeoff were presented. Plume modeling was also found to be particularly significant. Controllers based on plants with insufficient plume fidelity did not work well with the higherfidelityplants. Giventheabove,thethesismakessignificantcontributionstocontrol- relevanthypersonicvehiclemodeling,analysis,anddesign. iii To myFamily,Friends and Teachers iv ACKNOWLEDGEMENTS IamverygratefulforthecooperationandsupportofmyadvisorDr. A.A.Rodriguez,who has shownagreat deal ofpatienceand confidencein mywork. Besides my advisor, I would like to thank the rest of my thesis committee: Drs. K. Tsakalis,and V. Wells. There are several other faculty members who have widened my horizons considerably through their courses and guidance. In particular, I would like to thank Dr. Montgomery and Dr. Mittelmann. I would like to acknowledge the tremendous support and computing resources offered by theIra A.Fulton SchoolofEngineeringHighPerformance ComputingInitiative. I would also like to acknowledge the help and guidance of Jeffrey J. Dickeson and Srikanth Sridharan. Thiswork hasbeen supportedby NASAgrant NNX07AC42A. . v TABLE OFCONTENTS Page LIST OFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Workand LiteratureSurvey . . . . . . . . . . . . . . . . . 1 1.2.1 OverviewofHypersonicsResearch . . . . . . . . . . . . . 1 1.2.2 Controls-RelevantHypersonicVehicleModeling . . . . . . 8 1.2.3 Modelingand Control Issues/Challenges . . . . . . . . . . 10 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5 TableofDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 OVERVIEWOF HYPERSONIC VEHICLE MODEL . . . . . . . . . . 22 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 VehicleLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 EquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 AerodynamicModeling . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.1 U.S. Standard Atmosphere(1976) . . . . . . . . . . . . . . 32 2.4.2 ViscousEffects . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.3 UnsteadyEffects . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Properties Across aShock . . . . . . . . . . . . . . . . . . . . . . 38 2.6 Force andMomentSummations . . . . . . . . . . . . . . . . . . . 40 2.7 PropulsionModeling . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.7.1 Shock Conditions. . . . . . . . . . . . . . . . . . . . . . . 47 2.7.2 TranslatingCowl Door. . . . . . . . . . . . . . . . . . . . 47 2.7.3 Inlet Properties. . . . . . . . . . . . . . . . . . . . . . . . 47 2.7.4 DiffuserExit-CombustorEntranceProperties. . . . . . . . . 48 v CHAPTER Page 2.7.5 CombustorExitProperties. . . . . . . . . . . . . . . . . . 48 2.7.6 Internal Nozzle. . . . . . . . . . . . . . . . . . . . . . . . 56 2.7.7 External Nozzle. . . . . . . . . . . . . . . . . . . . . . . . 57 2.8 Structure Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.9 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . 61 3 StaticProperties ofVehicle . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.1 Trim-Steps andIssues . . . . . . . . . . . . . . . . . . . . 64 3.3 StaticAnalysis: TrimmableRegion . . . . . . . . . . . . . . . . . 65 3.4 StaticAnalysis: NominalProperties . . . . . . . . . . . . . . . . . 67 3.4.1 StaticAnalysis: TrimFER . . . . . . . . . . . . . . . . . . 67 3.4.2 StaticAnalysis: TrimElevator . . . . . . . . . . . . . . . . 68 3.4.3 StaticAnalysis: TrimAngle-of-Attack . . . . . . . . . . . 69 3.4.4 StaticAnalysis: TrimForebodyDeflection . . . . . . . . . 70 3.4.5 StaticAnalysis: TrimAftbodyDeflection . . . . . . . . . . 71 3.4.6 StaticAnalysis: TrimDrag . . . . . . . . . . . . . . . . . . 72 3.4.7 StaticAnalysis: TrimDrag (Inviscid) . . . . . . . . . . . . 73 3.4.8 StaticAnalysis: TrimDrag (Viscous) . . . . . . . . . . . . 74 3.4.9 StaticAnalysis: TrimDrag Ratio (Viscous/Total) . . . . . . 75 3.4.10 StaticAnalysis: TrimL/DRatio . . . . . . . . . . . . . . . 76 3.4.11 StaticAnalysis: TrimElevatorForce . . . . . . . . . . . . 77 3.4.12 StaticAnalysis: TrimCombustorMach . . . . . . . . . . . 78 3.4.13 StaticAnalysis: TrimCombustorTemp. . . . . . . . . . . . 79 3.4.14 StaticAnalysis: TrimFuel MassFlow . . . . . . . . . . . . 80 3.4.15 StaticAnalysis: TrimInternal NozzleMach . . . . . . . . . 81 3.4.16 StaticAnalysis: TrimInternal NozzleTemp. . . . . . . . . 82 vi CHAPTER Page 3.4.17 StaticAnalysis: TrimReynoldsNumber . . . . . . . . . . 83 3.4.18 StaticAnalysis: TrimAbsoluteViscosity . . . . . . . . . . 84 3.4.19 StaticAnalysis: TrimKinematicViscosity . . . . . . . . . 85 3.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . 86 4 DynamicProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2 Linearization -Stepsand Issues . . . . . . . . . . . . . . . . . . . 89 4.3 DynamicAnalysis: NominalProperties -Mach 8, 85kft . . . . . . 92 4.3.1 NominalPole-Zero Plot . . . . . . . . . . . . . . . . . . . 92 4.3.2 ModalAnalysis. . . . . . . . . . . . . . . . . . . . . . . . 93 4.4 DynamicAnalysis-RHP Pole, Zero variations . . . . . . . . . . . 95 4.4.1 DynamicAnalysis: RHPPole . . . . . . . . . . . . . . . . 95 4.4.2 DynamicAnalysis: RHPZero . . . . . . . . . . . . . . . . 96 4.4.3 DynamicAnalysis: RHPZero-Poleratio . . . . . . . . . . 97 4.5 DynamicAnalysis-Frequency Responses . . . . . . . . . . . . . 99 4.5.1 DynamicAnalysis-BodeMagnitudeResponse . . . . . . . 99 4.5.2 DynamicAnalysis-BodePhaseResponse . . . . . . . . . 99 4.6 DynamicAnalysis-SingularValues . . . . . . . . . . . . . . . . . 100 4.7 FPA ControlViaFER . . . . . . . . . . . . . . . . . . . . . . . . 101 4.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 101 5 PlumeModelingand EngineDesignConsiderations . . . . . . . . . . . 103 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 EngineParameterStudies . . . . . . . . . . . . . . . . . . . . . . 104 5.3 PlumeCalculationBased onP . . . . . . . . . . . . . . . . . . . 109 ∞ 5.3.1 Exact PlumeCalculation Based on P -(P -Exact) . . . . 113 ∞ ∞ 5.4 Exact PlumeCalculationBased on P - (P -Exact) . . . . . . 119 shock shock 5.5 New PlumeApproximationBased onP -(P -Approx) . . . 123 shock shock vii CHAPTER Page 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6 Control SystemDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.2 Control Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3 ControllerDesign . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.2 Ideas forFutureResearch . . . . . . . . . . . . . . . . . . . . . . 151 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 A CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 viii LIST OF TABLES Table Page 2.1 MassDistributionforHSV Model . . . . . . . . . . . . . . . . . . . . 30 2.2 States forHypersonicVehicleModel . . . . . . . . . . . . . . . . . . . 31 2.3 ControlsforHypersonicVehicleModel . . . . . . . . . . . . . . . . . 31 2.4 VehicleNominalParameterValues . . . . . . . . . . . . . . . . . . . . 32 2.5 ViscousInteractionSurfaces . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 HSV -Forces and Moments . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1 Polesat Mach 8, 85kft: LevelFlight,FlexibleVehicle . . . . . . . . . . 93 4.2 Zerosat Mach 8, 85kft: LevelFlight,FlexibleVehicle . . . . . . . . . . 93 4.3 EigenvectorMatrixatMach 8, 85kft: LevelFlight,FlexibleVehicle . . 94 5.1 Comparisonof3EngineDesigns(Mach 8, 85kft, LevelFlight) . . . . . 108 5.2 Momentsactingon vehicleat Mach 8,85 kft . . . . . . . . . . . . . . . 116 5.3 Momentsactingon vehicleat Mach 8,85 kft . . . . . . . . . . . . . . . 121 5.4 Momentsactingon vehicleat Mach 8,85 kft . . . . . . . . . . . . . . . 125 6.1 Gap betweenplants(Mach 8, 85kft) . . . . . . . . . . . . . . . . . . . 134 6.2 Closedloopproperties fordifferentsettlingtime . . . . . . . . . . . . . 148 6.3 Closedloopproperties(P -ApproxcontrollerwithP -ExactPlant) 148 shock shock ix

Description:
higher fidelity plants. Given the above, the thesis makes significant contributions to control- relevant hypersonic vehicle modeling, analysis, and design
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.