ebook img

Model identification and data analysis PDF

403 Pages·2019·2.627 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Model identification and data analysis

(cid:2) ModelIdentificationandDataAnalysis (cid:2) (cid:2) (cid:2) (cid:2) Model Identification and Data Analysis SergioBittanti PolitecnicodiMilano Milan,Italy (cid:2) (cid:2) (cid:2) (cid:2) Thiseditionfirstpublished2019 ©2019JohnWiley&Sons,Inc. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions. TherightofSergioBittantitobeidentifiedastheauthorofthisworkhasbeenassertedin accordancewithlaw. RegisteredOffice JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthis workandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarranties ofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefact thatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe (cid:2) (cid:2) informationorservicestheorganization,website,orproductmayprovideorrecommendationsit maymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthis workwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanyloss ofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData Names:Bittanti,Sergio,author. Title:Modelidentificationanddataanalysis/SergioBittanti,Politecnico diMilano,Milan,Italy. Description:Hoboken,NJ,USA:Wiley,[2019]|Includesbibliographical referencesandindex.| Identifiers:LCCN2018046965(print)|LCCN2018047956(ebook)|ISBN 9781119546412(AdobePDF)|ISBN9781119546313(ePub)|ISBN9781119546368 (hardcover) Subjects:LCSH:Mathematicalmodels.|Quantitativeresearch.|System identification. Classification:LCCTA342(ebook)|LCCTA342.B582019(print)|DDC 511/.8–dc23 LCrecordavailableathttps://lccn.loc.gov/2018046965 Coverdesign:Wiley Coverimage:©OleksiiLishchyshyn/Shutterstock,©gremlin/GettyImages Setin10/12ptWarnockProbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 (cid:2) (cid:2) v Contents Introduction xi Acknowledgments xv 1 StationaryProcessesandTimeSeries 1 1.1 Introduction 1 1.2 ThePredictionProblem 1 1.3 RandomVariable 4 1.4 RandomVector 5 (cid:2) 1.4.1 CovarianceCoefficient 7 (cid:2) 1.5 StationaryProcess 9 1.6 WhiteProcess 11 1.7 MAProcess 12 1.8 ARProcess 16 1.8.1 StudyoftheAR(1)Process 16 1.9 Yule–WalkerEquations 20 1.9.1 Yule–WalkerEquationsfortheAR(1)Process 20 1.9.2 Yule–WalkerEquationsfortheAR(2)andAR(n)Process 21 1.10 ARMAProcess 23 1.11 SpectrumofaStationaryProcess 24 1.11.1 SpectrumProperties 24 1.11.2 SpectralDiagram 25 1.11.3 MaximumFrequencyinDiscreteTime 25 1.11.4 WhiteNoiseSpectrum 25 1.11.5 ComplexSpectrum 26 1.12 ARMAModel:StabilityTestandVarianceComputation 26 1.12.1 RuzickaStabilityCriterion 28 1.12.2 VarianceofanARMAProcess 32 1.13 FundamentalTheoremofSpectralAnalysis 35 1.14 SpectrumDrawing 38 1.15 ProofoftheFundamentalTheoremofSpectralAnalysis 43 1.16 RepresentationsofaStationaryProcess 45 (cid:2) (cid:2) vi Contents 2 EstimationofProcessCharacteristics 47 2.1 Introduction 47 2.2 GeneralPropertiesoftheCovarianceFunction 47 2.3 CovarianceFunctionofARMAProcesses 49 2.4 EstimationoftheMean 50 2.5 EstimationoftheCovarianceFunction 53 2.6 EstimationoftheSpectrum 55 2.7 WhitenessTest 57 3 Prediction 61 3.1 Introduction 61 3.2 FakePredictor 62 3.2.1 PracticalDeterminationoftheFakePredictor 64 3.3 SpectralFactorization 66 3.4 WhiteningFilter 70 3.5 OptimalPredictorfromData 71 3.6 PredictionofanARMAProcess 76 3.7 ARMAXProcess 77 3.8 PredictionofanARMAXProcess 78 (cid:2) 4 ModelIdentification 81 (cid:2) 4.1 Introduction 81 4.2 SettingtheIdentificationProblem 82 4.2.1 LearningfromMaxwell 82 4.2.2 AGeneralIdentificationProblem 84 4.3 StaticModeling 85 4.3.1 LearningfromGauss 85 4.3.2 LeastSquaresMadeSimple 86 4.3.2.1 TrendSearch 86 4.3.2.2 SeasonalitySearch 86 4.3.2.3 LinearRegression 87 4.3.3 EstimatingtheExpansionoftheUniverse 90 4.4 DynamicModeling 92 4.5 ExternalRepresentationModels 92 4.5.1 BoxandJenkinsModel 92 4.5.2 ARXandARModels 93 4.5.3 ARMAXandARMAModels 94 4.5.4 MultivariableModels 96 4.6 InternalRepresentationModels 96 4.7 TheModelIdentificationProcess 100 4.8 ThePredictiveApproach 101 4.9 ModelsinPredictiveForm 102 4.9.1 BoxandJenkinsModel 103 (cid:2) (cid:2) Contents vii 4.9.2 ARXandARModels 103 4.9.3 ARMAXandARMAModels 104 5 IdentificationofInput–OutputModels 107 5.1 Introduction 107 5.2 EstimatingARandARXModels:TheLeastSquaresMethod 107 5.3 Identifiability 110 ̄ 5.3.1 TheRMatrixfortheARX(1,1)Model 111 ̄ 5.3.2 TheRMatrixforaGeneralARXModel 112 5.4 EstimatingARMAandARMAXModels 115 5.4.1 ComputingtheGradientandtheHessianfromData 117 5.5 AsymptoticAnalysis 123 5.5.1 DataGenerationSystemWithintheClassofModels 125 5.5.2 DataGenerationSystemOutsidetheClassofModels 127 5.5.2.1 SimulationTrial 132 5.5.3 GeneralConsiderationsontheAsymptoticsofPredictive Identification 132 5.5.4 EstimatingtheUncertaintyinParameterEstimation 132 5.5.4.1 DeductionoftheFormulaoftheEstimationCovariance 134 5.6 RecursiveIdentification 138 (cid:2) 5.6.1 RecursiveLeastSquares 138 (cid:2) 5.6.2 RecursiveMaximumLikelihood 143 5.6.3 ExtendedLeastSquares 145 5.7 RobustnessofIdentificationMethods 147 5.7.1 PredictionErrorandModelError 147 5.7.2 FrequencyDomainInterpretation 148 5.7.3 Prefiltering 149 5.8 ParameterTracking 149 6 ModelComplexitySelection 155 6.1 Introduction 155 6.2 Cross-validation 157 6.3 FPECriterion 157 6.3.1 FPEConcept 157 6.3.2 FPEDetermination 158 6.4 AICCriterion 160 6.4.1 AICVersusFPE 161 6.5 MDLCriterion 161 6.5.1 MDLVersusAIC 162 6.6 Durbin–LevinsonAlgorithm 164 6.6.1 Yule–WalkerEquationsforAutoregressiveModelsofOrders1 and2 165 6.6.2 Durbin–LevinsonRecursion:FromAR(1)toAR(2) 166 (cid:2) (cid:2) viii Contents 6.6.3 Durbin–LevinsonRecursionforModelsofAnyOrder 169 6.6.4 PartialCovarianceFunction 171 7 IdentificationofStateSpaceModels 173 7.1 Introduction 173 7.2 HankelMatrix 175 7.3 OrderDetermination 176 7.4 DeterminationofMatricesGandH 177 7.5 DeterminationofMatrixF 178 7.6 MidSummary:AnIdealProcedure 179 7.7 OrderDeterminationwithSVD 179 7.8 ReliableIdentificationofaStateSpaceModel 181 8 PredictiveControl 187 8.1 Introduction 187 8.2 MinimumVarianceControl 188 8.2.1 DeterminationoftheMVControlLaw 190 8.2.2 AnalysisoftheMVControlSystem 192 8.2.2.1 Structure 193 8.2.2.2 Stability 193 (cid:2) 8.3 GeneralizedMinimumVarianceControl 196 (cid:2) 8.3.1 ModelReferenceControl 198 8.3.2 PenalizedControlDesign 200 8.3.2.1 ChoiceAforQ(z) 201 8.3.2.2 ChoiceBforQ(z) 203 8.4 Model-BasedPredictiveControl 204 8.5 Data-DrivenControlSynthesis 205 9 KalmanFilteringandPrediction 209 9.1 Introduction 209 9.2 KalmanApproachtoPredictionandFilteringProblems 210 9.3 TheBayesEstimationProblem 212 9.3.1 BayesProblem–ScalarCase 213 9.3.2 BayesProblem–VectorCase 215 9.3.3 RecursiveBayesFormula–ScalarCase 215 9.3.4 Innovation 217 9.3.5 RecursiveBayesFormula–VectorCase 219 9.3.6 GeometricInterpretationofBayesEstimation 220 9.3.6.1 GeometricInterpretationoftheBayesBatchFormula 220 9.3.6.2 GeometricInterpretationoftheRecursiveBayesFormula 222 9.4 One-step-aheadKalmanPredictor 223 9.4.1 TheInnovationintheStatePredictionProblem 224 9.4.2 TheStatePredictionError 224 9.4.3 OptimalOne-Step-AheadPredictionoftheOutput 225 9.4.4 OptimalOne-Step-AheadPredictionoftheState 226 (cid:2) (cid:2) Contents ix 9.4.5 RiccatiEquation 228 9.4.6 Initialization 231 9.4.7 One-step-aheadOptimalPredictorSummary 232 9.4.8 Generalizations 236 9.4.8.1 System 236 9.4.8.2 Predictor 236 9.5 MultistepOptimalPredictor 237 9.6 OptimalFilter 239 9.7 Steady-StatePredictor 240 9.7.1 GainConvergence 241 9.7.2 ConvergenceoftheRiccatiEquationSolution 244 9.7.2.1 ConvergenceUnderStability 244 9.7.2.2 ConvergenceWithoutStability 246 9.7.2.3 Observability 250 9.7.2.4 Reachability 251 9.7.2.5 GeneralConvergenceResult 256 9.8 InnovationRepresentation 265 9.9 InnovationRepresentationVersusCanonical Representation 266 9.10 K-TheoryVersusK–WTheory 267 9.11 ExtendedKalmanFilter–EKF 271 (cid:2) (cid:2) 9.12 TheRobustApproachtoFiltering 273 9.12.1 NormofaDynamicSystem 274 9.12.2 RobustFiltering 276 10 ParameterIdentificationinaGivenModel 281 10.1 Introduction 281 10.2 KalmanFilter-BasedApproaches 281 10.3 Two-StageMethod 284 10.3.1 FirstStage–DataGenerationandCompression 285 10.3.2 SecondStage–CompressedDataFitting 287 11 CaseStudies 291 11.1 Introduction 291 11.2 KobeEarthquakeDataAnalysis 291 11.2.1 ModelingtheNormalSeismicActivityData 294 11.2.2 ModelValidation 296 11.2.3 AnalysisoftheTransitionPhaseviaDetectionTechniques 299 11.2.4 Conclusions 300 11.3 EstimationofaSinusoidinNoise 300 11.3.1 FrequencyEstimationbyNotchFilterDesign 301 11.3.2 FrequencyEstimationwithEKF 305 AppendixA LinearDynamicalSystems 309 A.1 StateSpaceandInput–OutputModels 309 (cid:2) (cid:2) x Contents A.1.1 CharacteristicPolynomialandEigenvalues 309 A.1.2 OperatorRepresentation 310 A.1.3 TransferFunction 310 A.1.4 Zeros,Poles,andEigenvalues 310 A.1.5 RelativeDegree 311 A.1.6 EquilibriumPointandSystemGain 311 A.2 LagrangeFormula 312 A.3 Stability 312 A.4 ImpulseResponse 313 A.4.1 ImpulseResponsefromaStateSpaceModel 314 A.4.2 ImpulseResponsefromanInput–OutputModel 314 A.4.3 QuadraticSummabilityoftheImpulseResponse 315 A.5 FrequencyResponse 315 A.6 MultiplicityofStateSpaceModels 316 A.6.1 ChangeofBasis 316 A.6.2 RedundancyintheSystemOrder 317 A.7 ReachabilityandObservability 318 A.7.1 Reachability 318 A.7.2 Observability 320 A.7.3 PBHTestofReachabilityandObservability 321 A.8 SystemDecomposition 323 (cid:2) (cid:2) A.8.1 ReachabilityandObservabilityDecompositions 323 A.8.2 CanonicalDecomposition 324 A.9 StabilizabilityandDetectability 328 AppendixB Matrices 331 B.1 Basics 331 B.2 Eigenvalues 335 B.3 DeterminantandInverse 337 B.4 Rank 340 B.5 AnnihilatingPolynomial 342 B.6 AlgebraicandGeometricMultiplicity 345 B.7 RangeandNullSpace 345 B.8 QuadraticForms 346 B.9 DerivativeofaScalarFunctionwithRespecttoaVector 349 B.10 MatrixDiagonalizationviaSimilarity 350 B.11 MatrixDiagonalizationviaSingularValueDecomposition 351 B.12 MatrixNormandConditionNumber 353 AppendixC ProblemsandSolutions 357 Bibliography 391 Index 397 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.