ebook img

Model-Free Prediction and Regression: A Transformation-Based Approach to Inference PDF

256 Pages·2015·3.876 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Model-Free Prediction and Regression: A Transformation-Based Approach to Inference

Frontiers in Probability and the Statistical Sciences Dimitris N. Politis Model-Free Prediction and Regression A Transformation-Based Approach to Inference Frontiers in Probability and the Statistical Sciences Editor-inChief: SomnathDatta DepartmentofBioinformatics&Biostatistics UniversityofLouisville Louisville,Kentucky,USA SeriesEditors: FrederiG.Viens DepartmentofMathematics&DepartmentofStatistics PurdueUniversity WestLafayette,Indiana,USA DimitrisN.Politis DepartmentofMathematics UniversityofCalifornia,SanDiego LaJolla,California,USA HannuOja DepartmentofMathematicsandStatistics UniversityofTurku Turku,Finland MichaelDaniels SectionofIntegrativeBiology DivisionofStatistics&ScientificComputation UniversityofTexas Austin,Texas,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/11957 Dimitris N. Politis Model-Free Prediction and Regression A Transformation-Based Approach to Inference 123 DimitrisN.Politis DepartmentofMathematics UniversityofCalifornia,SanDiego LaJolla,CA,USA FrontiersinProbabilityandtheStatisticalSciences ISBN978-3-319-21346-0 ISBN978-3-319-21347-7 (eBook) DOI10.1007/978-3-319-21347-7 LibraryofCongressControlNumber:2015948372 SpringerChamHeidelbergNewYorkDordrechtLondon ©TheAuthor2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternational PublishingAGSwitzerlandispartofSpringerScience+Business Media(www. springer.com) Fu¨rdiezwei ViolinenunddieViolades Model-FreienQuartetts Preface Predictionhasbeenoneoftheearliestformsofstatisticalinference.Theemphasis onparametricestimationandtestingseemsto onlyhaveoccurredabout100years ago;seeGeisser(1993)forahistoricaloverview.Indeed,parametricmodelsserved as a cornerstone for the foundation of Statistical Science in the beginning of the twentiethcenturybyR.A.Fisher,K.Pearson,J.Neyman,E.S.Pearson,W.S.Gosset (alsoknownas“Student”),etc.;theirseminaldevelopmentsresultedintoacomplete theoryofstatisticsthatcouldbepracticallyimplementedusingthetechnologyofthe time,i.e.,penandpaper(andslide-rule!). While some models are inescapable, e.g., modeling a polling dataset as a se- quence of independentBernoullirandom variables, others appear contrived,often invoked for the sole reason to make the mathematics work. As a prime example, theubiquitous—andtypicallyunjustified—assumptionofGaussiandatapermeates statisticstextbookstotheday.Modelcriticismanddiagnosticsweredevelopedasa practicalwayout;seeBox(1976)foranaccountofthemodel-buildingprocessby oneofthepioneersofappliedstatistics. With the advent of widely accessible powerful computing in the late 1970s, computer-intensivemethodssuchasresamplingandcross-validationcreatedarev- olutioninmodernstatistics. Usingcomputers,statisticiansbecameabletoanalyze big datasets for the first time, paving the way towards the “big data” era of the twenty-first century. But perhaps more importantwas the realization that the way wedotheanalysiscould/shouldbechangedaswell,aspractitionersweregradually freedfromthe limitationsofparametricmodels.Forinstance,thegreatsuccessof Efron’s(1979)bootstrapwasinprovidingacompletetheoryforstatisticalinference underanonparametricsettingmuchlikeMaximumLikelihoodEstimationhaddone halfacenturyearlierundertherestrictiveparametricsetup. Nevertheless,thereisafurtherstep onemaytake,i.e.,goingbeyondevennon- parametricmodels,andthisisthesubjectofthemonographathand.Toexplainthis, letusmomentarilyfocusonregression,i.e.,datathatarepairs:(Y ,X ),(Y ,X ),..., 1 1 2 2 (Y ,X ),whereY isthemeasuredresponseassociatedwitharegressorvalueofX. n n i i Thereareseveralwaystomodelsuchadataset;threemainonesarelistedbelow. vii viii Preface Theyallpertaintothestandard,homoscedasticadditivemodel: Y =μ(X)+ε (1) i i i wheretherandomvariablesεareassumedtobeindependent,identicallydistributed i (i.i.d.)fromadistributionF(·)withmeanzero. • Parametricmodel: Both μ(·)andF(·)belongtoparametricfamiliesoffunc- tions,e.g.,μ(x)=β +βxandF(·)isN(0,σ2). 0 1 • Semiparametricmodel: μ(·)belongstoaparametricfamily,whereasF(·)does not;instead,itmaybeassumedthatF(·)belongstoasmoothnessclass,etc. • Nonparametric model: Neither μ(·) nor F(·) can be assumed to belong to parametricfamiliesoffunctions. Despite the nonparametric aspect of it, even the last option constitutes a model, and is thus rather restrictive. To see why, note that Eq.(1) with i.i.d. errors is not satisfied inmanycases ofinterestevenafterallowingforheteroscedasticityofthe errors. For example, consider the modelY =G(X,ε), where the ε are i.i.d., and i i i i G(·,·)isanonlinear/non-additivefunctionoftwovariables.Itisforthisreason,i.e., to render the data amenable to an additive model such as (1), that a multitude of transformationsin regressionhavebeen proposedand studiedoverthe years,e.g., Box-Cox,ACE,AVAS,etc.;seeLintonetal.(1997)forareview. Nevertheless,itispossibletoshunEq.(1)altogetherandstillconductinference aboutaquantityofinterestsuchastheconditionalexpectationfunctionE(Y|X=x). Incontrasttononparametricmodel(1),thefollowingmodel-freeassumptioncanbe made: • Model-freeregression: – Randomdesign.Thepairs(Y ,X ),(Y ,X ),...,(Y ,X )arei.i.d. 1 1 2 2 n n – Deterministicdesign.ThevariablesX ,...,X aredeterministic,andtheran- 1 n dom variablesY ,...,Y are independentwith common conditionaldistribu- 1 n tion,i.e.,P{Y ≤y|X =x}=D (y)notdependingon j. j j x Inferenceforfeatures,i.e.,functionals,ofthecommonconditionaldistributionD (·) x is still possible under some regularity conditions, e.g., smoothness. Arguably,the mostimportantsuchfeatureistheconditionalmeanE(Y|X=x)thatcanbedenoted μ(x).Whileμ(x)iscrucialinthemodel(1)asthefunctionexplainingY onthebasis ofX =x,ithasakeyfunctioninmodel-freepredictionaswell: μ(x )isthemean f squared error (MSE) optimal predictor of a future response Y associated with a f regressorvaluex . f Aswillbeshowninthesequel,itispossibletoaccomplishthegoalofpointand intervalpredictionofY undertheabovemodel-freesetup;thisisachievedviathe f Model-freePredictionPrincipledescribedin PartI of thebook.In so doing,the solutiontointerestingestimationproblemsisobtainedasaby-product,e.g.,infer- ence on features of D (·); the prime example again is μ(x). Hence, a Model-free x approach to frequentist statistical inference is possible, including prediction and confidenceintervals. Preface ix Innonparametricstatistics,itiscommontotrytodevelopsomeasymptoticthe- oryfornewmethodsdeveloped.Inadditiontoofferingjustificationfortheaccuracy of these methods,asymptoticsoftenprovideinsightson practicalimplementation, e.g., on the optimal choice of smoothing bandwidth, etc. All of the methods dis- cussed/employedin the proposed Model-free approach to inference will be based on estimators that have favorable large-sampleproperties—such as consistency— under regularity conditions. Furthermore, asymptotic information on bandwidth rates,MSE decayrates, etc.will begivenwheneveravailablein the formof Facts orClaimstogetherwithsuggestionsontheirproofand/orreferences.However,for- maltheoremsandproofsweredeemedbeyondthescopeofthismonographinorder tobetterfocusonthemethodology,aswellaskeepthebook’slength(andtimeof completion)undercontrol.Perhapsmoreimportantly,notethatitisstillunclearhow toproperlyjudgethequalityofpredictionintervalsinanasymptoticsetting;some preliminaryideasonthisissuearegiveninSects.3.6.2and7.2.3,andtheRejoinder ofPolitis(2013). Interestingly,theemphasisonpredictionseemstobecomingbackfull-circlein thetwenty-firstcenturywiththerecentboominmachinelearninganddatamining; see, e.g., the highlyinfluentialbookonstatistical learningby Hastie etal. (2009), and the recent monograph on predictive modeling by Kuhn and Johnson (2013). TheModel-freepredictionmethodspresentedhereareofaverydifferentnaturebut share some similarities, e.g., in employing cross-validation and sample re-use for fine-tuning and optimization, and may thus complement well the popular model- basedapproachestopredictionandclassification.Furthermore,ideasfromstatisti- callearningandmodelselectioncouldeventuallybeincorporatedintheModel-free frameworkas well, e.g., selecting a subset of regressors;this is the subjectof on- goingwork.Notably,themethodspresentedinthismonographareverycomputer- intensive; relevant R functions and software are given at: http://www.math. ucsd.edu/˜politis/DPsoftware.html. I would like to thank my colleagues in the Departments of Mathematics and Economics of UCSD for their support, and my Ph.D. students for bearing with someofthematerial.Ihavebenefitedimmenselyfromsuggestionsanddiscussions withcolleaguesfromallovertheworld;averypartiallistincludes:IanAbramson, EryArias-Castro,BrendanBeare,PatriceBertail,RicardoCao,AnirbanDasGupta, RichardDavis,BradEfron,PeterHall,XumingHe,NancyHeckman,Go¨ranKauer- mann,ClaudiaKlu¨ppelberg,PiotrKokoszka,Jens-PeterKreiss,MicheleLaRocca, Jacek Leskow, Tim McMurry, George Michailidis, Stathis Paparoditis, Mohsen Pourahmadi, Jeff Racine, Joe Romano, Dimitrios Thomakos, Florin Vaida, Slava Vasiliev,PhilippeVieu,andMichaelWolf.Furtheracknowledgementsaregivenat theendofseveralchapters. In closing, I would like to thank the Division of Mathematical Sciences of the NationalScienceFoundationfortheircontinuingsupportwithmultiplegrants,the most recent ones being DMS-10-07513and DMS 13-08319,and the John Simon GuggenheimMemorialFoundationfora2011–2012fellowshipthathelpedmeget started on this monograph. I would also like to thank Marc Strauss and Hannah

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.