SPRINGER BRIEFS IN PHYSICS Edmund J. Sullivan Model-Based Processing for Underwater Acoustic Arrays 123 SpringerBriefs in Physics EditorialBoard EgorBabaev,UniversityofMassachusetts,USA MalcolmBremer,UniversityofBristol,UK XavierCalmet,UniversityofSussex,UK FrancescaDiLodovico,QueenMaryUniversityofLondon,UK MaartenHoogerland,UniversityofAuckland,NewZealand EricLeRu,VictoriaUniversityofWellington,NewZealand JamesOverduin,TowsonUniversity,USA VesselinPetkov,ConcordiaUniversity,Canada CharlesH.-T.Wang,UniversityofAberdeen,UK AndrewWhitaker,Queen’sUniversityBelfast,UK Moreinformationaboutthisseriesathttp://www.springer.com/series/8902 Edmund J. Sullivan Model-Based Processing for Underwater Acoustic Arrays 123 EdmundJ.Sullivan Portsmouth,RI,USA ISSN2191-5423 ISSN2191-5431 (electronic) SpringerBriefsinPhysics ISBN978-3-319-17556-0 ISBN978-3-319-17557-7 (eBook) DOI10.1007/978-3-319-17557-7 LibraryofCongressControlNumber:2015938454 SpringerChamHeidelbergNewYorkDordrechtLondon ©EdmundJ.Sullivan2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternational PublishingAGSwitzerlandispartofSpringerScience+Business Media(www. springer.com) To Lori,who leftus fartoosoon Preface This monograph presents a reasonably complete treatment of the model-based approachto the processing of data from underwater acoustic arrays. By complete wemeanthatthematerialhereinisaccessibletoanyoneatthelevelofabachelor’s degree in engineering, but may not be sufficiently familiar with the areas of statisticalsignalprocessingoracousticarrayprocessing.Withthisgoalinmind,it providesareasonablyrigoroustreatmentofstandardtime-domainstatisticalsignal processingandacousticarrayprocessingwithanemphasisonitsspatialprocessing aspects. A second reason for taking this approach is that since the processing philosophypresentedheredifferssufficientlyfromthestandardapproach,areview ofthestandardapproachwaswarranted. At its heart, model-based processing as discussed here is a form of Bayesian processingthatreliesheavilyonphysicalmodelstoprovidetheaprioriinformation. ThisisdonewithintheframeworkoftheKalmanfilter,sinceititselfisaBayesian processor, and additionally provides a natural framework for including physical models, along with the ability of including prior information in a statistical form as in the usual Bayesian processor. Further, it is capable of easily handling the nonlinearitiesthataccompanyreal-worldmodels.Byphysicalmodelswemeanhere such phenomenaas array motion, array configuration,signalstructures other than planewavemodels,andoceanicpropagationmodels.Becauseofthis,thematerial presentedhereconstitutesanapproachtoacousticarrayprocessingthatiscapable ofprovidingperformanceimprovementovermanyofthepresentlyusedmethods. I wouldlike toacknowledgeDr. JamesCandy,Chief ScientistforEngineering, the LawrenceLivermoreNationalLaboratoryfor originallyintroducingme to the Kalmanfilterandemphasizingitsapplicabilityfarbeyonditsoriginalareaofcontrol theory.Hemadeitclearthatitprovidesaframeworkforperformanceenhancement to the field of signal processing and estimation theory in a very general way. I also gratefully acknowledge Dr. Allan Pierce, Professor Emeritus of Mechanical Engineering,BostonUniversity,whoencouragedmetowritethisbook. Portsmouth,RI,USA EdmundJ.Sullivan December2014 vii Contents 1 Introduction .................................................................. 1 1.1 Background.............................................................. 1 1.2 TheInverseProblem.................................................... 1 1.3 Model-BasedProcessing................................................ 4 1.4 Observability............................................................ 6 1.5 BookOutline............................................................ 7 References..................................................................... 7 2 TheAcousticArray ......................................................... 9 2.1 TheAcousticArray..................................................... 9 2.2 TheLineArray.......................................................... 10 2.3 Beamforming............................................................ 13 2.3.1 DelayandSumBeamforming.................................. 13 2.3.2 PhaseShiftBeamformingandthek(cid:2)! Beamformer........ 14 2.3.3 BeamPatterns................................................... 16 2.4 ArrayGainandtheDirectivityIndex .................................. 17 2.4.1 LimitationsoftheDirectivityIndex ........................... 20 2.5 ArrayOptimization ..................................................... 21 2.6 BearingEstimation...................................................... 22 2.7 Three-DimensionalArrays ............................................. 23 References..................................................................... 25 3 StatisticalSignalProcessingOverview .................................... 27 3.1 Introduction ............................................................. 27 3.2 DetectionTheoryforTotallyKnownSignals.......................... 27 3.3 ClassicalEstimationTheory............................................ 30 3.4 TheCramér–RaoLowerBound........................................ 31 3.5 EstimatorStructure...................................................... 33 3.5.1 TheMinimumVarianceUnbiasedEstimator.................. 34 3.5.2 TheNon-whiteMinimumVarianceUnbiasedEstimator ..... 35 3.5.3 BestLinearUnbiasedEstimator ............................... 36 3.5.4 TheMaximumLikelihoodEstimator.......................... 37 ix
Description: