ebook img

Model-Based Processing for Underwater Acoustic Arrays PDF

120 Pages·2015·2.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Model-Based Processing for Underwater Acoustic Arrays

SPRINGER BRIEFS IN PHYSICS Edmund J. Sullivan Model-Based Processing for Underwater Acoustic Arrays 123 SpringerBriefs in Physics EditorialBoard EgorBabaev,UniversityofMassachusetts,USA MalcolmBremer,UniversityofBristol,UK XavierCalmet,UniversityofSussex,UK FrancescaDiLodovico,QueenMaryUniversityofLondon,UK MaartenHoogerland,UniversityofAuckland,NewZealand EricLeRu,VictoriaUniversityofWellington,NewZealand JamesOverduin,TowsonUniversity,USA VesselinPetkov,ConcordiaUniversity,Canada CharlesH.-T.Wang,UniversityofAberdeen,UK AndrewWhitaker,Queen’sUniversityBelfast,UK Moreinformationaboutthisseriesathttp://www.springer.com/series/8902 Edmund J. Sullivan Model-Based Processing for Underwater Acoustic Arrays 123 EdmundJ.Sullivan Portsmouth,RI,USA ISSN2191-5423 ISSN2191-5431 (electronic) SpringerBriefsinPhysics ISBN978-3-319-17556-0 ISBN978-3-319-17557-7 (eBook) DOI10.1007/978-3-319-17557-7 LibraryofCongressControlNumber:2015938454 SpringerChamHeidelbergNewYorkDordrechtLondon ©EdmundJ.Sullivan2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternational PublishingAGSwitzerlandispartofSpringerScience+Business Media(www. springer.com) To Lori,who leftus fartoosoon Preface This monograph presents a reasonably complete treatment of the model-based approachto the processing of data from underwater acoustic arrays. By complete wemeanthatthematerialhereinisaccessibletoanyoneatthelevelofabachelor’s degree in engineering, but may not be sufficiently familiar with the areas of statisticalsignalprocessingoracousticarrayprocessing.Withthisgoalinmind,it providesareasonablyrigoroustreatmentofstandardtime-domainstatisticalsignal processingandacousticarrayprocessingwithanemphasisonitsspatialprocessing aspects. A second reason for taking this approach is that since the processing philosophypresentedheredifferssufficientlyfromthestandardapproach,areview ofthestandardapproachwaswarranted. At its heart, model-based processing as discussed here is a form of Bayesian processingthatreliesheavilyonphysicalmodelstoprovidetheaprioriinformation. ThisisdonewithintheframeworkoftheKalmanfilter,sinceititselfisaBayesian processor, and additionally provides a natural framework for including physical models, along with the ability of including prior information in a statistical form as in the usual Bayesian processor. Further, it is capable of easily handling the nonlinearitiesthataccompanyreal-worldmodels.Byphysicalmodelswemeanhere such phenomenaas array motion, array configuration,signalstructures other than planewavemodels,andoceanicpropagationmodels.Becauseofthis,thematerial presentedhereconstitutesanapproachtoacousticarrayprocessingthatiscapable ofprovidingperformanceimprovementovermanyofthepresentlyusedmethods. I wouldlike toacknowledgeDr. JamesCandy,Chief ScientistforEngineering, the LawrenceLivermoreNationalLaboratoryfor originallyintroducingme to the Kalmanfilterandemphasizingitsapplicabilityfarbeyonditsoriginalareaofcontrol theory.Hemadeitclearthatitprovidesaframeworkforperformanceenhancement to the field of signal processing and estimation theory in a very general way. I also gratefully acknowledge Dr. Allan Pierce, Professor Emeritus of Mechanical Engineering,BostonUniversity,whoencouragedmetowritethisbook. Portsmouth,RI,USA EdmundJ.Sullivan December2014 vii Contents 1 Introduction .................................................................. 1 1.1 Background.............................................................. 1 1.2 TheInverseProblem.................................................... 1 1.3 Model-BasedProcessing................................................ 4 1.4 Observability............................................................ 6 1.5 BookOutline............................................................ 7 References..................................................................... 7 2 TheAcousticArray ......................................................... 9 2.1 TheAcousticArray..................................................... 9 2.2 TheLineArray.......................................................... 10 2.3 Beamforming............................................................ 13 2.3.1 DelayandSumBeamforming.................................. 13 2.3.2 PhaseShiftBeamformingandthek(cid:2)! Beamformer........ 14 2.3.3 BeamPatterns................................................... 16 2.4 ArrayGainandtheDirectivityIndex .................................. 17 2.4.1 LimitationsoftheDirectivityIndex ........................... 20 2.5 ArrayOptimization ..................................................... 21 2.6 BearingEstimation...................................................... 22 2.7 Three-DimensionalArrays ............................................. 23 References..................................................................... 25 3 StatisticalSignalProcessingOverview .................................... 27 3.1 Introduction ............................................................. 27 3.2 DetectionTheoryforTotallyKnownSignals.......................... 27 3.3 ClassicalEstimationTheory............................................ 30 3.4 TheCramér–RaoLowerBound........................................ 31 3.5 EstimatorStructure...................................................... 33 3.5.1 TheMinimumVarianceUnbiasedEstimator.................. 34 3.5.2 TheNon-whiteMinimumVarianceUnbiasedEstimator ..... 35 3.5.3 BestLinearUnbiasedEstimator ............................... 36 3.5.4 TheMaximumLikelihoodEstimator.......................... 37 ix

Description:
This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.