ebook img

Model-Based Control of Flying Robots for Robust Interaction Under Wind Influence PDF

168 Pages·2022·18.303 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Model-Based Control of Flying Robots for Robust Interaction Under Wind Influence

Springer Tracts in Advanced Robotics 151 Teodor Tomić Model-Based Control of Flying Robots for Robust Interaction Under Wind Influence Springer Tracts in Advanced Robotics Volume 151 SeriesEditors BrunoSiciliano,DipartimentodiIngegneriaElettricaeTecnologie dell’Informazione,UniversitàdegliStudidiNapoliFedericoII,Napoli,Italy OussamaKhatib,ArtificialIntelligenceLaboratory,DepartmentofComputer Science,StanfordUniversity,Stanford,CA,USA AdvisoryEditors NancyAmato,ComputerScience&Engineering,TexasA&MUniversity,College Station,TX,USA OliverBrock,FakultätIV,TUBerlin,Berlin,Germany HermanBruyninckx,KULeuven,Heverlee,Belgium WolframBurgard,InstituteofComputerScience,UniversityofFreiburg,Freiburg, Baden-Württemberg,Germany RajaChatila,ISIR,Pariscedex05,France FrancoisChaumette,IRISA/INRIA,Rennes,Ardennes,France WanKyunChung,RoboticsLaboratory,MechanicalEngineering,POSTECH, Pohang,Korea(Republicof) PeterCorke,QueenslandUniversityofTechnology,Brisbane,QLD,Australia PaoloDario,LEM,ScuolaSuperioreSant’Anna,Pisa,Italy AlessandroDeLuca,DIAGAR,SapienzaUniversitàdiRoma,Roma,Italy RüdigerDillmann,HumanoidsandIntelligenceSystemsLab,KIT-Karlsruher InstitutfürTechnologie,Karlsruhe,Germany KenGoldberg,UniversityofCalifornia,Berkeley,CA,USA JohnHollerbach,SchoolofComputing,UniversityofUtah,SaltLake,UT,USA LydiaE.Kavraki,DepartmentofComputerScience,RiceUniversity,Houston,TX, USA VijayKumar,SchoolofEngineeringandAppliedMechanics,Universityof Pennsylvania,Philadelphia,PA,USA BradleyJ.Nelson,InstituteofRoboticsandIntelligentSystems,ETHZurich, Zürich,Switzerland FrankChongwooPark,MechanicalEngineeringDepartment,SeoulNational University,Seoul,Korea(Republicof) S.E.Salcudean,TheUniversityofBritishColumbia,Vancouver,BC,Canada RolandSiegwart,LEEJ205,ETHZürich,InstituteofRobotics&Autonomous SystemsLab,Zürich,Switzerland GauravS.Sukhatme,DepartmentofComputerScience,UniversityofSouthern California,LosAngeles,CA,USA TheSpringerTractsinAdvancedRobotics(STAR)publishnewdevelopmentsand advances in the fields of robotics research, rapidly and informally but with a high quality. The intent is to cover all the technical contents, applications, and multi- disciplinaryaspectsofrobotics,embeddedinthefieldsofMechanicalEngineering, Computer Science, Electrical Engineering, Mechatronics, Control, and Life Sciences,aswellasthemethodologiesbehindthem.Withinthescopeoftheseries aremonographs,lecturenotes,selectedcontributionsfromspecializedconferences andworkshops,aswellasselectedPhDtheses. Specialoffer:Forallclientswithaprintstandingorderweofferfreeaccesstothe electronicvolumesoftheSeriespublishedinthecurrentyear. IndexedbySCOPUS,DBLP,EICompendex,zbMATH,SCImago. AllbookspublishedintheseriesaresubmittedforconsiderationinWebofScience. Teodor Tomic´ Model-Based Control of Flying Robots for Robust Interaction Under Wind Influence TeodorTomic´ SanFrancisco,CA,USA ISSN 1610-7438 ISSN 1610-742X (electronic) SpringerTractsinAdvancedRobotics ISBN 978-3-031-15392-1 ISBN 978-3-031-15393-8 (eBook) https://doi.org/10.1007/978-3-031-15393-8 ©SpringerNatureSwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland ForAlfred Foreword Atthedawnofthecentury’sthirddecade,roboticsisreachinganelevatedlevelof maturityandcontinuestobenefitfromtheadvancesandinnovationsinitsenabling technologies.Theseallarecontributingtoanunprecedentedefforttobringingrobots to human environment in hospitals and homes, factories, and schools; in the field for robots fighting fires, making goods and products, picking fruits, and watering the farmland, saving time and lives. Robots today hold the promise for making a considerable impact in a wide range of real-world applications from industrial manufacturingtohealthcare,transportation,andexplorationofthedeepspaceand sea.Tomorrow,robotswillbecomepervasiveandtouchuponmanyaspectsofmodern life. TheSpringerTractsinAdvancedRobotics(STAR)isdevotedtobringingtothe research community the latest advances in the robotics field on the basis of their significanceandquality.Throughawideandtimelydisseminationofcriticalresearch developmentsinrobotics,ourobjectivewiththisseriesistopromotemoreexchanges andcollaborationsamongtheresearchersinthecommunityandcontributetofurther advancementsinthisrapidlygrowingfield. The monograph by Teodor Tomic´ is based on the author’s doctoral thesis. The contents are focused on aerial robotics and are organized in seven chapters. Robustmodel-basedcontroltechniquesareproposedforautonomousflyingrobots physicallyinteractingwiththeenvironmentwhileundertheinfluenceofwind. The book develops four essential phases of Fault Detection, Identification, and Recovery (FDIR) in terms of detection, classification, isolation, and recovery of collisionswiththeenvironment. Richofexamplesdevelopedbymeansofsimulationandextensiveexperimenta- tiononprototypeandcommercialflyingplatforms,thisvolumewastheco-winner of the 2019 Georges Giralt Ph.D. Award for the best doctoral thesis in Europe. A veryfineadditiontotheSTARseries! Naples,Italy BrunoSiciliano July2022 STAREditor vii Preface This monograph is based on my Ph.D. thesis written at the Institute of Robotics andMechatronicsoftheGermanAerospaceCenter(DLR)inOberpfaffenhofenand while working at Skydio in Redwood City, CA, USA. The thesis was defended at theLeibnizUniversityofHannover(LUH)inSeptember2018. Thisbookaddressesthetopicofautonomousflyingrobotsphysicallyinteracting withtheenvironmentwhileundertheinfluenceofwind.Itaimstomakeaerialrobots awareofthedisturbance,interaction,andfaultsactingonthem.First,thebookaims tomakeflyingrobotsawareofcontactsandcollisions,byprovidingalow-leveldetec- tionandreactionframework.Thisrequiresthereasoningabouttheexternalwrench (forceandtorque)actingontherobot,anddiscriminating(distinguishing)between wind,interactions,andcollisions.Second,thisbookaimstoprovideanestimateof thewindvelocitythatisindependentoftheexternalwrench.Thisallowsamotion planner to reason about future external forces based on the aerodynamics model. Finally,thisbookaimstobridgethegapbetweentrajectorytrackingandinteraction control,toallowphysicalinteractionunderwindinfluence,whichismadepossible bythediscriminationoftheseforces.Ittakesamodel-basedapproachtodiscriminate betweentheforcessimultaneouslyactingontherobot,comingfromphysicalinter- action,disturbancessuchaswind,andfaultssuchascollisions.Toachievethis,the bookcoversasystematicapproachtomodelingandparameteridentificationforflying robots. Aerodynamics model identification is approached in a data-driven fashion, usingground-truthmeasurementsobtainedina3Dwindtunnel.Properreactionis requiredasaresponsetoeachexternalinfluence:therobotshouldrejectdisturbances forprecisepositioninginwind,reactcompliantlytophysicalinteractions,andreact intelligently to faults. Robust trajectory tracking control for disturbance rejection, anddeliberatephysicalinteractioncontrolaredevelopedforthispurpose.Tounder- stand the disturbance and discriminate between wind and interaction, methods for windestimationaredeveloped,includinganovelmethodtoestimatethewindspeed usingmotorpowermeasurements.Thebookfurtherdevelopsfouressentialphases of Fault Detection, Identification, and Recovery (FDIR) in the context of flying robots.Collisiondetectionprovidesbinaryinformationwhetheracollisionwiththe environment has occurred. Collision classification provides information about the ix x Preface collisiontype.Thelocationofthecollisionisobtainedthroughcollisionisolation. Lastly,appropriatecollisionrecoverymitigatesdanger.Thisconceptisexpandedto flyingrobotswarms.Theoreticalresultsareaccompaniedbyextensivesimulationand experimentalresultsonbothexperimentalandcommercialflyingrobotplatforms. Thecontentsofthismonographpresenttheculminationofsevenyearsofpersonal andprofessionalgrowth.Iamthankfulforbeinggiventherareopportunitytowork inintelectuallyinspiringanddemandingenvironmentsthathavepushedmetonew heights.Mostoftheworkrelatingtothisthesiswasdoneduringmysixyearsatthe GermanAerospaceCenter(DLR)InstituteofRoboticsandMechatronics,whereas forthelastyearthereofIhavebeenatSkydio.Iwouldalsoliketothankmyclose familyforthesupportthroughouttheyears. The most credit for finishing this thesis goes to Prof. Haddadin, who has not only been a true mentor, but also a good friend. By always demanding the best, withoutcompromises,hetaughtmehowtoapproachproblemswithgoodscientific questionsandtoneverquitpushingtowardssetgoals.Iwillrememberthesleepless nightsbeforedeadlines,andthelongtrainridesfilledwithinterestingdiscussions. Many people have supported me at DLR. I am grateful to Alin Albu-Schäffer, MichaelSuppa,KorbinianSchmid,HeikoHirschmüller,ArminWedler,andChris- tian Ott for giving me the opportunity to join and work with the amazing people at DLR. Due to my long tenure at DLR, there are figuratively countless people to thank for engaging discussions. I would like to thank Michael Kaßecker for the endlessdiscussionsaboutallthingmechanicalandelectrical,andothersocialinep- titude(likecomputerscience,life,theuniverse,andeverything).Theinstitutionof Florian Schmidt, always ready to help, listen, talk, and party, will always remain an inspiration. I am also thankful to have worked with Elmar Mair, Felix Rueß, Moritz Maier, Christoph Brand, Martin Schuster, Iris Grixa, Samantha Stoneman, MarcusMüller.IhavealsolearnedagreatdealfromdiscussionswithDanielSeth, Oli Eiberger, Robert Haslinger, Alexander Werner, Johannes Englsberger, Oliver Porges, and almost everyone at DLR. It has been a great period in my career and life.RelatingtowindtunnelexperimentsanddevelopmentoftheDLRArdeahexa- copter,IwouldespeciallyliketothankPhilippLutz,Ingov.Bargen,HaraldWagner, TiloWüsthoff,andMarkusGrebenstein.Lastly,AndrewMathershassupportedthe experimentsatWindEEEinLondon,Canada.IngoKossykandSaumitroDasgupta havebeenagreathelponthemachinelearningsideofthings. I really appreciate the opportunity to work with people that make up Skydio throughout the years, and their support and understanding during the last year of writing this thesis, most notably Hayk Martyros, Adam Bry, Abraham Bachrach, RowlandO’Flaherty,andSaumitroDasgupta. I would like to thank Prof. Bruno Siciliano, the team of Springer, and the committee of the Georges Giralt Ph.D. Award for giving me the opportunity to publishmyresearchfindingsintheSpringerTractsinAdvancedRobotics. SanFrancisco,USA TeodorTomic´ July2022 Contents 1 Introduction ................................................... 1 1.1 ProblemStatement ........................................ 3 1.2 RelatedWork ............................................. 4 1.3 Contributions ............................................. 13 References ..................................................... 17 2 Modeling ...................................................... 23 2.1 DynamicsModel .......................................... 24 2.1.1 RigidBodyDynamics ............................... 24 2.1.2 PropulsionWrench .................................. 26 2.1.3 PropellerAerodynamics ............................. 27 2.1.4 SimplifiedDragModel .............................. 29 2.1.5 ReducedBrushlessDCMotorModel .................. 30 2.2 ParameterIdentification .................................... 31 2.3 ExternalWrenchEstimation ................................ 36 2.3.1 Momentum-BasedEstimation ........................ 37 2.3.2 Acceleration-BasedEstimation ....................... 37 2.3.3 HybridEstimation .................................. 38 References ..................................................... 39 3 TrackingandInteractionControl ................................ 41 3.1 TrajectoryTrackingControl ................................. 41 3.1.1 AttitudeTrackingControl ............................ 41 3.1.2 PositionTrackingControl ............................ 46 3.1.3 EvaluationofTrajectoryTracking ..................... 48 3.2 InteractionControl ........................................ 54 3.2.1 ImpedanceControlwithInertiaShaping ................ 54 3.2.2 CompensatedImpedanceControl ..................... 62 3.2.3 AdmittanceControl ................................. 63 3.2.4 DiscussionandPracticalConsiderations ................ 64 3.2.5 ExperimentalValidationofImpedanceControl .......... 65 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.